Hardening Building and Infrastructure Cluster

PROJECT A9: Cost-effective mitigation strategy development for building related earthquake risk

Australian Government Department of Industry, Innovation and Science Business Cooperative Research Centres Programme

Project Participants

Univ of Adelaide:

MC Griffith, M Jaksa, P Visintin, J Vaculik

Univ of Melbourne:

NTK Lam, H Goldsworthy, E Lumantarna

Swinburne University:

JL Wilson, E Gad, HH Tsang

Geoscience Australia:

M Edwards, H Ryu, M Wehner

End Users:

WA DFES, York Shire Council, ABCB, Standards Australia, EMA, State/Local Governments

Aim: to develop evidence base to inform decision making for earthquake risk mitigation

- Establish seismic vulnerability classes for representative building types in Australia
- Survey existing retrofit techniques for known performance in recent earthquakes
- Develop cost-effective Australia-specific retrofit solutions
- Develop decision-support and earthquake risk forecasting tools to support infrastructure managers
- Develop economic loss models that include business interruption and casualty costs

End User Engagement

- WA Dept Fire & Emergency Services
- York Shire Council
- WA Dept Planning, Lands & Heritage
- Standards Australia AS 3826
- Other indirect
 - > EMA
 - State & local governments
 - Bldg Code of Australia

YORK MAIN STREET

Out-of-plane wall bending failures in Christchurch (42 fatalities in URM buildings)

Some statistics

- 39 of the 42 fatalities associated with unreinforced masonry buildings were *outside* the building
- NZ law has existed for several decades requiring 'Earthquake Prone' building owners to strengthen or demolish it.
- However, it was up to 'local authorities' to enforce it.
- Often, cost-benefit arguments were used to 'avoid' strengthening

Slide 8

BUILDING SURVEY DATA CAPTURE INCLUDED:

(1463 BUILDINGS SURVEYED, 307 URM BUILDINGS IDENTIFIED)

- Building type and usage
- Building plan dimensions, # of storeys and storey heights
- Roof shape
- Presence/detail on chimneys, parapets, awnings/verandahs
- Presence/detail on existing retrofit
- Masonry wall material and bond pattern
- Separation with respect to adjacent buildings
- Presence of neighbour falling hazards

GENERIC BUILDING TYPOLOGIES

(a) Residential

(b) Pub

Falling Hazards: chimneys, gable end walls, parapets, out-of-plane wall failures

COMMERCIAL (ROW) BUILDINGS

(a) Single storey

(b) Two/three storey

Falling hazards: parapets, OOP wall failures in multi-storey bldgs.

2 STOREY INSTITUTIONAL BUILDINGS

(a) Isolated

(b) Row

Falling hazards: Parapets, chimneys, OOP wall failure

Damage & Economic Loss Modelling

- 1. Rank Vulnerability of Common Construction Types
- 2. Estimate Structural Drift for Various Magnitude Events
- **3**. Develop Damage-Drift Relationships to Estimate Building Damage for <u>unstrengthened</u> and <u>strengthened</u> buildings
- 4. Develop Cost-Damage Relationships to Estimate Economic Impact* of Natural Hazard
- costs to include fatalities & injuries, business interruption at a precinct level
- 1, 2 'done'; 3 & 4 in progress

PGA CAPACITIES AND PROBABILITY OF EXCEEDANCE OVER 30 YEAR TIME HORIZON

2010 Kalgoorlie Earthquake

Parapet/awning damage in URM buildings in M5.0 earthquake

Closing Remarks

- WA DFES and York Shire Council end user engagement has been fantastic:
 - Community engagement has been good;
 - Seismically vulnerable buildings have been identified;
 - Seismic strengthening options being developed for typical York buildings;
 - DFES and York Shire successfully applied for a \$250,000 NDRP 2019-21 grant to expand scope across all of WA;
- Much of the assessment and retrofit solutions being developed for York will have national application
- Update of AS 3826 "Earthquake strengthening of existing buildings"