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Introduction

There are comparatively few attempts to quantitatively and objectively integrate the 
various hazard, exposure and vulnerability components to calculate a final impact 
output. One such hazard impact model is the Vehicle Overturning Model which 
combines probabilistic hazard information with exposure and vulnerability data to 
produce a forecast of vehicle overturning risk (Hemingway and Gunawan, 2018;  
Hemingway and Robbins, 2019). A second example is the Surface Water Flooding 
hazard impact model (Aldridge et al. 2016).  

In this paper we outline early steps towards a potential future Australian wind and rain 
hazard impact model through a combined effort of Geoscience Australia's capability for 
impact simulation, and the Bureau of Meteorology's provision of detailed spatial hazard 
grids. 

The impact forecasting workflow 
In the project, we use a paradigm of Hazard – Exposure – Vulnerability – Impact 
(“HEVI”) for evaluating the physical impact of an extreme weather event. This paradigm 
reflects the integrated nature of impacts, and the dependence of the final outcome on 
the interaction of the three components (Figure 1). If any of the three components is 
reduced, then the overall impact is reduced. For this project, we formulated a specific 
definition of each of the components (reference?). Due to the cross-cutting themes 
involved in impact modelling, it is important that all stakeholders understand the terms 
used in communicating “impact”provides the definitions of the terms used for the 
project. While these definitions for hazard and exposure can cover a wide range of 
phenomena and assets, we restrict ourselves to wind speed and rainfall for the hazard, 
and to residential houses for exposure. More details on each of these components are 
provided in the hazards, exposure and vulnerability sections below.  

ABSTRACT
Research in the social science area 
have pointed out that "traditional" 
hazard-based forecasts and warnings 
may not be well understood so that 
mitigating actions for the protection of 
life and property are not taken 
(Demuth et al. 2012). The extension of 
a hazard forecast towards the 
description of impacts on the forecast 
recipient might effect a more suitable 
mitigating response and has led to an 
emerging and growing desire among 
National Hydrological and 
Meteorological Services for impact-
based forecasts and warnings 
(Harrowsmith 2015;  World 
Meteorological Organization 2015).  

A number of major weather services 
(e.g. UK Met Office, Bureau of 
Meteorology) have therefore 
introduced impact-based services in 
recognition of the above findings. 
Since 2011 the UK Met Office has 
issued impact-based warnings where 
the warning level is derived from a risk 
matrix in a partly subjective procedure 
(Met Office 2018). In a related 
manner, the Extreme Weather Desk at 
the Australian Bureau of Meteorology 
has recently developed the 
Community Hazard Risk Outlook. 
Forecasters subjectively rate the 
expected impact level of a model-
predicted hazard on a range of assets 
from which an aggregated impact level 
is calculated. Combined with a 
subjective likelihood assessment the 
UK Met Office risk matrix concept is 
again utilised to derive an overall 
hazard risk.  

In addition to subjective or partly 
subjective impact specifications, the 
factors influential in the final 
likelihood, location or magnitude of an 
impact can be delivered as layers, 
which leaves their integration to the 
user. An example of such a system is 
the Global Hazard Map, also produced 
by the UK Met Office (Robbins and 
Titley 2018).  
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Table 1: Definitions of the core terms used in impact forecasting. 

Hazard Exposure Vulnerability Impact 

A severe weather event that has 
the potential to cause impacts to 
people, buildings, infrastructure, 
agriculture, environmental assets 
and communities. For this project, 
we are exploring the wind and 
rainfall elements of east coast 
lows. 

The elements that may (or may 
not) be impacted by a hazard 
event. Elements at risk includes 
dwellings or households, buildings 
and structures, public facilities 
and infrastructure assets. 

The degree to which a building, 
structure, or other exposure 
element, is damaged by a given 
intensity of hazard. 

The consequences of a hazard 
event on an asset - the physical 
damage to an exposure element 
due to a hazard event. Commonly 
uses qualitative descriptions such 
as "slight", "moderate", "major" 
or "complete" 

The interaction of the three components can be non-linear. 
For example, the vulnerability, examined in the section on 
vulnerability below, is often a non-linear function of the 
hazard magnitude, with a twofold increase in the hazard 
commonly leading to much more than a twofold increase in 
impact. An example is the pressure force exerted by the wind - 
a doubling of the wind speed leads to a four-fold increase in 
the wind pressure. Further, the calculation of impact, 
discussed in the impact section below, is performed on the 
building scale but must be aggregated to larger geographic 
areas in order to reduce the influence of uncertainties. Despite 
this, the uncertainty in each of the workflow components 
combines to result in substantial levels of uncertainty in the 
impact, making verification challenging. There are additional 
challenges to verification, which will be explored in the 
verification section.  

Each of the impact components vary in space, with the hazard 
also varying in time as the weather forecast evolves. Thus, the 
impact forecast can be expected to vary spatially and 
temporally. The challenge for a forecaster or emergency 
manager is to combine the individual components in a 
meaningful way, with sufficient time to guide decision making 
within the context of their operations for communicating 

threats to the public – in the form of suitably worded and 
targeted warnings – or making preparations to reduce or 
respond to the impacts of an impending extreme weather 
event.  

There are challenges in bringing together the components of 
hazard, exposure and vulnerability for a nationally consistent 
view of the potential impacts of extreme weather. In the 
hazard space, the choice of weather forecast variables can 
greatly influence the predicted impact. In utilising numerical 
weather prediction model data (or, equivalently, reanalysis 
data), model grid spacing, choice of model physics 
parameterisations and available diagnostic variables can 
influence the resulting impact products.  

Knowledge of the exposed assets, in a consistent manner 
across the country, means there are challenges in defining key 
attributes where available data may be limited or only 
available as aggregate statistics. Similarly, it is not feasible to 
understand the vulnerability of individual buildings across the 
country, so the assets need to be categorised on the basis of a 
small number of attributes such as building age or roof type, 
so we can assign the most appropriate vulnerability model 
(from a limited number of such models) to each asset.  

Figure 1: Integration of the three components – hazard, exposure and vulnerability – to arrive at an estimate of impact (after 
Zscheischler et al. 2018). 
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The resulting impact information is intended to assist 
forecasters and emergency managers in formulating warnings 
or preparing for an event. Two key questions that need to be 
addressed is what type of impact information is of use to these 
end users, and what decisions are being made? Is the 
indicative damage state of residential buildings suitable to 
guide decisions, or are other metrics of more value?  These 
questions should be addressed in developing a future plan for 
utilising impact-based forecast products, but are not explored 
in detail here. 

Hazards: how do we represent 
severe weather? 
In choosing forecast weather elements as hazard 
representation, it is important to understand how these 
elements are observed, forecast and affect impact. The 
language we use to describe weather typically deconstructs 
the atmosphere into discrete components. However, 
atmospheric variables are complex and vary continuously in 
space and time. An example of this is in the description of 
wind which can fluctuate rapidly between extremes. Standard 
conventions describe this distribution as some mean 
component and a fluctuating "gust" which characterises the 
extreme values. But the duration over which this mean value 
and gust are calculated must be specified. The World 
Meteorological Organization (WMO) recommends a definition 
based on a running 3-second mean wind, with the 10-minute 
mean and 3-second maximum within a 10-minute interval the 
mean and gust for that interval (World Meteorological 
Organization 2008). Correspondingly, efforts have been made 
within model development to mirror these observations as 
output diagnostics (Sheridan 2018).  

Within the Unified Model, which underpins the suite of 
numerical weather prediction models at the Bureau of 
Meteorology, a parameterisation of the surface gust, based on 
the work of Beljaars (1987), the 3-second definition above is 
used. This is readily converted to a 0.2-second duration gust 
which is commonly used as the hazard measure for wind 
vulnerability relations (Harper et al. 2010). 

There are similar issues with the description and measurement 
of rainfall. While the total amount of rain will clearly modulate 
the effects of flooding and impact soil moisture (which has 
implications for tree fall and landslides), intense rainfall over 
short durations can lead to flash flooding and, when combined 
with strong winds, rain ingress (Blocken and Carmeliet, 
2004). As with wind, structures and assets respond differently: 
a particular drainage system may cope well with a large 
amount of steady, accumulated rainfall spread over 24 hours, 
but may struggle to dissipate high intensity rainfall over a 
period of 15 minutes. 

The key question then, is how to broadly characterise the 
hazards in order to capture the spread of impact over these 
varying scales. In this regard, the project is somewhat limited 
by the output of the chosen numerical weather model, BARRA: 
the Bureau of Meteorology Atmospheric high-resolution 

Regional Reanalysis for Australia (Su et. al. 2019). There are 
two key drivers behind the choice of this model. Firstly, 
atmospheric reanalyses such as BARRA provide a model 
estimate of the atmosphere constrained by observations to 
form a spatially continuous record over long periods. 
Reanalysis output can therefore be used to estimate a suite of 
weather variables at a particular time and location, not 
necessarily near an observation station. This is advantageous 
when considering historical severe weather events as the 
reanalysis output is generally more accurate than forecasts 
produced by operational models and provides a good estimate 
of hazardous weather during the period of interest. Secondly, 
the BARRA dataset comprises a 12 km horizontal grid spacing 
suite over the Australian region (BARRA-R) and a number of 
nested, 1.5 km horizontal grid spacing suites over some of the 
major Australian cities (BARRA-XX). These suites are akin to the 
operational ACCESS-R and ACCESS-C forecast models (Bureau 
of Meteorology 2010;  Bureau of Meteorology 2013;  Puri et al. 
2013), respectively, used by Bureau of Meteorology 
forecasters and on which future impact forecasting will be 
based. For the chosen case study in this paper, the 20-22 April 
2015 Dungog East Coast Low (ECL; Pepler and Coutts-Smith 
2013;  Speer et al. 2009), the spatial extent of damage lies 
within the domain of the BARRA-SY reanalysis dataset 
incorporating the region around Sydney. Model output 
referenced henceforth is extracted from this dataset. 

In order to represent the hazards that most closely produce 
the observed impact on residential housing through our 
workflow, we consider a range of wind and rain metrics which 
best characterise the inherent variation to each model output 
weather element of interest. For wind, these are the event 
maximum surface (10-m) mean windspeed (designated 
PSMW), 10-m wind gust (PSWG) and a "neighbourhood" wind 
gust (NSWG) calculated as the maximum within 40 km of a 
point over the course of the event. Event maxima are 
calculated from 10-minute reanalysis fields during the 72-hour 
period from 03 UTC 19 April 2015 to 03 UTC 22 April 2015. The 
neighbourhood wind gust provides some allowance for model 
placement errors in the spatial location of strong winds. In 
addition to these three surface fields, the event maximum 
"gradient-level" windspeed at 900 hPa (roughly 900 m AMSL) 
is calculated at each point in order to provide a supplementary 
characterisation of the wind energy in the lower atmosphere 
(PGWS). Combined, these four metrics (Figure 2), provide a 
reasonable characterisation of the maximum near-surface 
wind strength variability over the course of the event.  

Likewise, the rain hazard is represented at a point by the event 
maximum rainfall accumulated over periods of 10 minutes 
(PIRR), 1 hour (P1RR) and 6 hours (P6RR), calculated from 
model data output at rolling 10-minute intervals. The total 
event rainfall accumulation at a point (PTEA) is also 
considered. These intervals are chosen in order to represent 
rain impact from the closest reanalysis field to the 
instantaneous scale (10 minutes), through medium-duration 
rain events (1 and 6 hours) up to the full event rainfall. As with 
wind, a neighbourhood metric is calculated for the event 
maximum 1-hour rainfall (N1RR). A matrix showing all wind 
and rain metrics calculated is shown in Table 2. 
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Figure 2: Four characterisations of wind hazard for the 2015 East Coast Low event, as simulated in the BARRA-SY reanalysis 
(clockwise from top left): point gradient wind speed, point mean wind speed, point gust wind speed and neighbourhood gust wind 
speed. All values are in units of metres per second.
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Table 2: Nine hazard types (5 for rainfall impact, 4 for wind impact) are extracted from the high-resolution reanalysis dataset 
BARRA-SY. A Quadratic Discriminant Analysis (QDA) will utilise each of the wind and rain fields below to determine which 
combination of wind and rain hazard proxies possesses the optimum predictive capability for residential housing damage for the 
2015 East Coast Low event. 

Metric Description Use 

PSWG Event maximum point surface wind gust (estimated 3-second duration) Impact forecast, QDA 

PSMW Event maximum point surface mean wind (estimated 10-minute mean) Impact forecast, QDA 

NSWG Event maximum neighbourhood surface wind gust Impact forecast, QDA 

PGWS Event maximum point gradient-level (900 hPa) wind speed Impact forecast, QDA 

PIRR Event maximum point 10-minute accumulated rainfall QDA 

P1RR Event maximum point 1-hour accumulated rainfall QDA 

P6RR Event maximum point 6-hour accumulated rainfall QDA 

N1RR Event maximum neighbourhood 1-hour accumulated rainfall QDA 

PTEA Point total event accumulated rainfall QDA 

Exposure: what will be impacted? 
The list of elements exposed to an extreme weather event can 
be extensive, with different stakeholders having different 
assets of interest. For example, State Emergency Services may 
prioritise the impacts to buildings, while electricity 
transmission line operators would prioritise impacts on their 
transmission lines and substation assets. Businesses and 
lifeline utilities, including energy, water, communication, and 
transport will also be impacted. Although they play a 
significant role and are of interest to emergency services and 
the owners and operators of those assets, due to the 
interdependencies and complexity of these networks they are 
not addressed in this project. 

To constrain the scope of this pilot study, residential buildings, 
comprising semi-detached and separate houses, are initially 
selected as the asset class for the demonstration of the project 
workflow. Geoscience Australia’s National Exposure 
Information System (NEXIS; Power et al. 2017) contains 
nationally-consistent construction type information for these 
house types. 

NEXIS contains publicly available exposure information. Where 
building-specific information is not publicly available, NEXIS 
derives attribute information based on transparent statistical 
methods and rules. There are challenges arising from the 
available source information used to define the various 
methods, and the derived NEXIS attributes may not reflect the 

actual constructional information at a local scale (individual 
buildings). Statistically derived building attributes are one of 
the many sources of uncertainty in the quantitative calculation 
of physical impacts on residential buildings. 

Vulnerability: how much damage will 
be caused? 
The last step in the workflow to forecast impact is to estimate 
how much damage is caused by the forecast hazard to the 
inventory of exposed assets. To make this estimate, 
relationships between some measure of damage and hazard 
magnitude are used. Such relationships can be either 
vulnerability functions or fragility functions. 

Vulnerability functions relate average damage suffered by a 
population of similar assets to hazard magnitude. Fragility 
functions relate proportions of a population of similar assets in 
different damage states to hazard magnitude. Often, both 
types of functions are presented as S-shaped curves although 
there is no requirement to do so. This is particularly the case 
for flood hazard where the required repair increases in a series 
of steps as water depth increases. 

Vulnerability and fragility functions can be developed by three 
methods: heuristic estimation, analytical computation and, 
finally, empirical data. In terms of measuring damage, or the 
vertical axis of a vulnerability  
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Figure 3: Heuristic vulnerability functions for a range of WA house types exposed to severe wind hazard (Boughton, 2018). 

curve, damage index is often used as this is a non-dimensional 
measure of damage which is defined as repair cost divided by 
replacement cost. Since it is non-dimensional it can be applied 
to any building of the relevant type irrespective of building 
size. 

Heuristic vulnerability and fragility functions are developed by 
people experienced in observing or estimating loss from 
natural hazard qualitatively estimating a vulnerability function 
informed by their experience and any available empirical data. 
Figure 3 shows an example set of heuristic vulnerability curves 
for a selection of Western Australian house types exposed to 
severe wind hazard (Boughton 2018). 

Analytical vulnerability and fragility functions are developed 
using an engineering model to estimate damage caused by a 
hazard of a certain magnitude and then costing the repair of 
the modelled damage. Figure 4 shows an example of an 
analytical vulnerability function for a modern house type 
exposed to riverine (low velocity) inundation. In this instance, 
the repair work at a range of inundations depths (hazard 

magnitudes) was documented and the repair work costed. The 
repair work at each depth was divided by the house’s 
replacement cost to produce a damage index and the points 
plotted.  

Empirical vulnerability and fragility curves are produced by 
fitting functions to scatters of points of damage against hazard 
magnitude. The empirical data can be sourced from a variety 
of sources such as: 

• Postal surveys,

• Insurance loss data,

• Post-disaster surveys,

• Rapid damage assessments, or

• Emergency service call-out records.

Figure 5 shows example empirical damage data for a single 
storey brick-veneer slab-on-grade house exposed to riverine 
flooding.  

Figure 4: Analytical vulnerability function for a single storey brick veneer, slab-on-grade house exposed to riverine flood hazard 
(Wehner et al. 2017).
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(a) 

(b) 

Figure 5: Empirical data sourced from a postal survey of damage incurred due to flooding to the same house type as Figure 4. Figure 
(a) shows the scatter of data and Figure (b) shows a box plot for the same data. In each figure the red line is the analytical
vulnerability curve shown in Figure 4 (Wehner et al., 2017).

The choice of using either vulnerability functions or fragility 
functions to estimate damage depends on the required output 
from the impact forecasting. For example, impact expressed as 
estimated numbers of houses in different states may be of 
more use to an emergency manager than an estimate of the 
aggregate repair bill across an event footprint, whereas the 
insurance industry would be more interested in the latter. 

The above examples of vulnerability and fragility functions 
relate damage to a single hazard: wind or flood. The BNHCRC 
Impact Forecasting project is examining a workflow to forecast 
impacts to residential houses from storms. Storms (such as 
ECLs) can cause damage via several mechanisms: 

• Direct structural damage caused by wind loads
exceeding the strength of building components,

• Wind-borne debris,

• Tree-fall caused by wind actions on trees close to
buildings,

• Water ingress resulting from rainfall (wind-driven or
not).

Whilst some heuristic vulnerability curves for houses exposed 
to wind exist, these could be improved using empirical data for 
calibration. No existing vulnerability or fragility functions use 
rainfall amount or rainfall rate as a hazard measure. 
Furthermore, the hazard measure used for the wind 
vulnerability curves is often the 0.2s gust wind speed at 10m at 
the building of interest. This is a quantity that is not presently 
forecast by the numerical weather prediction models used by 
weather services around the world.  

The project attempted to generate project-specific fragility 
functions for residential houses exposed to storm hazard from 
empirical data sourced from the NSW Emergency Information 
Coordination Unit (EICU). Figure 6 shows a plot of damage 
state plotted against model forecast surface gust wind speed. 
Each black dot represents a data point. There is no relationship 
of increasing numbers of houses in higher damage states with 
increasing hazard magnitude. Figure 7 shows damage state 
plotted against forecast maximum 6-hour rainfall rate. Again, 
there is no relationship of increasing numbers of houses in 
higher damage states with increasing hazard magnitude.  
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The figures illustrate that there is a complex relationship 
between multiple perils and resulting damage. 
To explore the potential use of a combined damage predictor 
(wind and rainfall measures) the project investigated 
combinations of four different measures of wind hazard and 
five different measures of rainfall hazard.  

Figure 8 shows the results of the investigation. The 
combination of hazard measures that yielded the best results 
(highest probabilities) is the point 10-minute accumulated 
rainfall  (PIRR) and the point maximum gradient wind speed 
(PGWS) shown in the top right-hand panel of Figure 8. 

Figure 6: Fragility data from 2072 EICU damage assessments for the 20-22 April 2015 ECL storm plotted against the event maximum 
surface gust wind speed (PSWG) simulated by the BARRA-SY Reanalysis. 

Figure 7: Fragility data from 2072 EICU damage assessments for the 20-22 April 2015 ECL storm plotted against maximum 6-hour 
rainfall rate (P6RR) modelled by the BARRA-SY Reanalysis.
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Figure 8: Quadratic discriminant analysis (QDA) of damage arising due to combination of rainfall and wind hazards. The colours 
represent the probability of a building being damaged in an event with the prescribed wind and rainfall hazard levels. See Table 2 
for definitions of hazard parameters. "Damaged" is defined as EICU damage ratings in the categories moderate, extensive or 
complete. Contour intervals are 0.25.  

The project’s work has highlighted the benefit that empirical 
damage data gathered during rapid damage surveys and 
emergency services call-outs can bring to improving the 
understanding of the relationship between damage and 
causative hazards. However, to be of use for quantitative 
impact prediction some basic attributes have to be collected: 

• Location of the observation,

• The nature of the building where the observation is
made,

• The causative hazard or hazards, e.g. direct wind
damage, water ingress, tree fall, etc., and

• The severity or degree of damage.

The above data needs to be collected in a consistent manner 
across events and jurisdictions. 

Impacts: what does the forecast look 
like? 
Impacts are calculated at individual building level, so that each 
asset is assigned a specific hazard magnitude and resulting 

damage index. To reduce the influence of uncertainties, largely 
associated with the definition of exposure, the results of the 
impact calculations are aggregated to larger geographical 
areas by attributing the mean damage index to this area, in 
line with the statistical definition of exposure attributes (see 
SA1 area definition below). The mean damage index is then 
expressed in terms of five damage state categories, as mapped 
out in Table 3. The aggregation from the individual building 
scale to the areal scale reduces the likelihood of users 
attributing a high level of spatial precision to the results (akin 
to our earlier discussion on the “neighbourhood” hazard 
definition). 

Figure 9 shows the mean damage state for SA1 geographical 
areas (Australian Bureau of Statistics, 2019), derived using the 
point maximum surface wind gust (PSWG) hazard variable. The 
values are determined as a damage ratio for each building 
point in the region, then averaged across the geographical 
area. The values are then mapped to indicative damage states 
(Table 3) for dissemination. In general, the areas of highest 
damage are close to the coast, where gust wind speeds are 
highest 
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Figure 9: Forecast mean damage state due to point maximum surface wind gust (PSWG) on residential buildings, aggregated to SA1 
geographical regions for the 20-22 April 2015 Dungog ECL. 

Accuracy: how do we verify this? 
It is important to verify forecasts to measure their accuracy 
and facilitate continual model improvement. Impact forecast 
verification requires observed impact data, ideally in the same 
format as the forecast. For example, a temperature forecast 
for a particular time can be compared with the observed 
thermometer reading in an unambiguous way. Verifying an 
impact forecast, however, is complicated as the observations 
are not routinely conducted and there is no standardised 
format. For the Dungog ECL, impact observations are available 
from two sources. Rapid damage assessment (RDA) data 
compiled by Fire and Rescue NSW for the Emergency 
Information Coordination Unit (EICU), or by analysing State 
Emergency Service (SES) callout data. EICU data (Error! 
Reference source not found.) provide a measure of the level 
of damage inflicted upon a structure within five qualitative 
categories: Negligible, Slight, Moderate, Extensive, Complete. 
Unfortunately, this data has limited spatial coverage, and is 
typically concentrated around urban centres. Conversely, SES 
callout data provides better spatial coverage, but records 
emergency response due to a range of issues (tree fall, power 
lines down etc.) and there is no clear way to disaggregate the 
damage reports by hazard within the dataset. The callout data 
also doesn't capture any detail of the damage level. Instead, a 
“service demand” parameter can be calculated to determine 
the comparative impact across SA1 areas (for a definition, see 
Australian Bureau of Statistics, 2019) where relatively high 
service demand is assumed to correspond to relatively higher 
impact: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑆𝑆𝑆𝑆1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑆𝑆𝑆𝑆1

Because the service demand is spatially complete and applies 
to SA1 areas, this measure is more readily compared with the 
output of an impact forecast than the EICU data which are 
collected in limited areas only. An example is shown for wind 
gust impact on residential buildings (Figure 11). While not 
strictly like-for-like, comparison of the spatial impact forecast 
with the relative service demand can be used to answer a 
number of questions regarding the skill and utility of the wind 
impact forecast. For example:  

• How well does the prediction discriminate between
different observed outcomes?

• Does the forecast rank SA1 area impact in the same
order as the service demand is observed?

• Does the location of maximum forecast impact match
the location of highest service demand?

• Is the area of total damage well predicted?

The relative importance of these questions is determined by 
the end-user of the forecast.  For example, the ability to 
predict where the maximum impact will occur can help target 
the warning message and assist in planning where to deploy 
responders. Having confidence in the total damage area would 
help agencies to plan for a response of an appropriate size.   

73



Australian Institute for Disaster Resilience 

Table 3: Definition of damage states for residential separate houses. 

Damage state Damage index range Description for residential houses 

Negligible 0.0 – 0.02 Little or no visible damage from the outside. No broken windows, or failed roof deck. 
Minimal loss of roof cover, with no or very limited water penetration. 

Slight 0.02 – 0.1 Moderate roof damage that can be covered to prevent additional water ingress. One 
window, door or garage door broken. 

Moderate 0.1 – 0.2 Major roof damage, moderate window breakage. Minor roof sheathing failure. Some water 
damage to interior. 

Extensive 0.2 – 0.5 Major window damage or roof sheathing loss. Major roof cover loss. Extensive damage to 
interior from water. 

Complete > 0.5 Complete roof failure and/or failure of wall frame. Loss of more than 50% of roof sheathing. 

Figure 10: Rapid Damage Assessment (RDA) data from the Emergency Information Coordination Unit (EICU) overlaid on the 
predicted mean damage state based on BARRA-SY using the point maximum surface wind gust (PSWG) as the wind hazard for the 
20-22 April 2015 Dungog ECL.
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Figure 11: SES service demand averaged across SA1 areas, for the 20-22 April 2015 Dungog ECL. 

The damage assessments by the EICU (Error! Reference source 
not found.) and the SES (Figure 11) show damage information 
that implicitly aggregates over all hazards and intermediary 
impacts including water ingress, flooding and tree fall. This 
mismatch between modelled and reported impacts is one of 
the primary drivers complicating the comparison of the impact 
modelling results with the ground truth damage data. In Error! 
Reference source not found., the spatially selective damage 
survey approach inherent in the EICU data does not allow for a 
proper evaluation of predicted impacts in areas where no EICU 
reports are present. The predicted impact highlights an area 
north of Newcastle as a more severely affected region due to 
wind damage, and many of the EICU "destroyed" ratings can 
be found in broadly the same area. The spatial extent of the 
predicted impact area of negligible or more severe damage 
broadly captures the area in which the EICU carried out 
damage assessments, indicating that the model-predicted 
impact area is reasonably placed. In Figure 11, the predicted 
impact area highlights the coastal zone as the primary damage 
area, but the correspondence to the detailed service demand 
areas is rudimentary.  

While the above approach is reasonable given the limitations 
of the observed data, improvements to the survey process are 
necessary to provide quantitative guidance on the accuracy of 
a spatial impact forecast. An ideal dataset combines the spatial 
coverage of the SES callout data with the damage state 
description of the EICU survey. Additionally, a report 
containing linkages between damage and the associated 
hazards could, for example, help to distinguish between wind 
and flood damage as well remove incidents related to tree fall 
and other events not considered within the workflow. In 
reality, impact is often a complex result of multiple hazards. 
Improved data and survey procedures will aid forecast 
verification as well as drive an enhanced understanding of 
structural response and vulnerability to a range of hazards. 

Summary and the way forward 
To date we combined wind hazards from a 1.5 km numerical 
weather prediction model with exposure data from NEXIS and 
heuristic vulnerability functions to calculate, without human 
input, spatial physical impacts on residential housing in 
Australia. The workflow that produced the calculated wind 
impact was tested on the 20-22 April 2015 East Coast Low 
event that was associated with three fatalities near Dungog, 
New South Wales. An attempt to derive case-specific empirical 
vulnerability functions revealed that the residential building 
damage (impact) in the Dungog event is not well explained by 
either the wind or the rain hazard as sourced from the high 
resolution (BARRA-SY) reanalysis data. A specific combination 
of the wind and the rain fields, determined by a quadratic 
discriminant analysis applied to 20 wind and rain hazard 
predictor combinations, appears to have a stronger linkage to 
the observed impact, underscoring yet again that physical 
impacts tend to be multi-hazard in origin.  

The focus now, naturally, turns towards the usefulness and 
quality of the impact outputs that we can produce. Early 
verification attempts revealed that the required matching of 
predicted impact data with compatible damage assessment 
data on the ground is currently not fully achievable. On the 
modelling side, there is a need to capture how multiple and 
potentially interacting hazards lead to an integrated impact. 
On the damage data collection side there is a need to 
standardise and categorise the degree of damage and to link it 
to the underlying hazard or hazards that caused the damage. 
Moreover, an uplift in the availability of exposure data is 
essential for the future improvement of quantitative spatial 
physical impact prediction as it removes the large 
uncertainties associated with the need to infer building 
attributes from the currently available datasets. 
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