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Disclaimer 
  
This material was produced with funding provided by the Attorney-General's Department 
through the National Emergency Management program.  The Bushfire and Natural Hazards 
CRC, Attorney-General's Department and the Australian Government make no 
representations about the suitability of the information contained in this document or any 
material related to this document for any purpose.  The document is provided 'as is' without
 warranty of any kind to the extent permitted by law.  The Bushfire and Natural Hazards 
CRC, Attorney-General's Department and the Australian Government hereby disclaim all 
warranties and conditions with regard to this information, including all implied warranties 
and conditions of merchantability, fitness for particular purpose, title and non-infringement.
  In no event shall the Bushfire and Natural Hazards CRC, Attorney-General's Department or 
the Australian Government be liable for any special, indirect or consequential damages or 
any damages whatsoever resulting from the loss of use, data or profits, whether in an action
 of contract, negligence or other tortious action, arising out of or in connection with the use 
of information available in this document.  The document or material related to this 
document could include technical inaccuracies or typographical errors. 
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1. Executive summary  

The objective of the Probabilistic Framework Project is to develop a new consequence-based 
fire danger rating system able to integrate a wide range of variables and link their complex 
interactions to the probability of property loss. The project aims at delivering a spatially-
explicit framework capable of generating daily maps representing the distribution of the 
probability of property loss at 10Km spatial resolution. 
 
The Probabilistic Framework Project has yielded the following achievements during its second 
year: 
 
a) A new “consequence-based” system (developed in year 1) has been refined and applied in 
two case study regions (Sydney basin; Victorian Central East Risk Landscape) . This system 
integrates a large range of environmental variables (e.g., fuel type, topography, house density, 
weather) and fundamental processes (e.g., fire ignition and propagation) governing fire 
behaviour to predict the probability of property loss from fire. A Bayesian network (BN) 
approach was used as the basis for the modelling framework; 
 
b) The BN framework has been successfully integrated with GIS facilities using newly developed 
specialist software to generate spatially explicit predictions of the probability of a fire spreading 
to and reaching the urban interface and then burning there at high intensity. Such predicted 
probabilities provide an index of the probability of property loss. The BN framework has the 
ability to generate predictions of these probabilities at varying spatial scales. Results for 5 and 10 
Km grids at a daily time-step are presented here for the Sydney basin. Results for a 10 km grid 
only are presented for the Victorian case study; 
 

c) For both case studies there was model predictions and fire history data over a 20 year period 

(1990 to 2010). Median predicted probabilities of fires reaching the interface and burning there 

at high intensity correspond with recorded instances of large fires that affected interfaces in this 

period. Model predictions over-predicted relatively high probability events compared with 

observed data. This result was consistent with the effects of suppression that were not 

accounted for in the model. Model predictions based on dates of large or destructive fires 

(Sydney case study only, 2000 to 2010 data) produced higher probabilities than a randomly 

based sample, consistent with the effects of more severe weather on days of large and/or 

destructive fire activity. Effects of differing grid resolution (Sydney only) were small. The model 

predictions showed greater spatial variation and resolution than modelled estimates of FFDI 

only. Overall, use of the model indicated that highest risk areas may potentially be identified by 

accounting not only for fire weather, but also fuels, the distribution of property, plus features 

inherent in the landscape that affect fire spread.  

d) Statistical modelling of human (accidental and arson) and lightning ignitions for the State of 

Victoria was done to support application of the BN model to the Victorian case study landscape. 
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Accidental ignitions in the Central East Risk Landscape were predicted by the FFDI, house density 

and distance to road, whereas arson ignitions were a function of human development – namely 

distance to road and the density of houses.  Lightning ignitions were predicted by FFDI, house 

density, distance to road an elevation. In all cases, preferred models were complex and non-

linear. A broader set of models for the entire state of Victoria, along with a description of the 

methodology, are presented in the Appendix   

e) A simulation study was undertaken using the Phoenix Rapidfire to generate data regarding fire 

size and travel distance under various fire weather and fuel treatment scenarios for the Victorian 

case study. .  Fire size increased with FFDI and decreased with increased prescribed burning 

effort.  Weather had the strongest effect on fire size with prescribed burning effort having a 

smaller effect within these bounds. Distance travelled was strongly correlated with fire size. The 

results were then used to populate the BN model used to generate predictions of likelihood of 

high intensity fires reaching the interface. 

f) The predictions derived from the BN model, and associated fire spread simulations indicate 

that the probability of fires of reaching the interface and burning there at high intensity are most 

strongly influenced by weather conditions. In addition the BN predictions indicate that such 

probabilities are highly sensitive to ignition and fire spread information, as conditioned by the 

totality of weather, terrain and fuel variations. Predictions of risk as derived through 

incorporation of these elements in the BN framework will exhibit considerable variation at fine 

temporal and spatial scales. Such variation is more nuanced that that derived from models of 

fire weather alone. This indicates that the probabilistic BN framework has the potential to be 

used to derive more carefully targeted “fine-grained” warnings of potential property loss. The 

results derived from the BN also indicated that predictions will be sensitive to fire suppression 

activity. This element of management is poorly dealt with in current fire spread simulation 

models. Improvement in the capacity to model suppression is therefore an important research 

priority.  
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2. Purpose 

The purpose of this document is to describe the activities conducted and the results achieved during 

the second contract (i.e., from February 2013 to June 2014) of the Attorney-General’s Department 

National Fire Danger Rating System – Probabilistic Framework Project.    

 

3. Background: Fire danger rating systems and Bayesian network 

Fire danger rating systems have been developed in many fire-prone regions around the world to 

assist authorities in a variety of fire management activities such as assessing the potential for fires 

and issuing fire warning (Sharples et al., 2009). Traditionally, these systems combine different 

environmental variables affecting fire behaviour, such as weather data (e.g., temperature, relative 

humidity, wind speed and direction), terrain properties (e.g., slope and aspects) and fuel 

characteristics (e.g., type and load) (Leblon et al., 2001; Burgan et al., 1998; Mathews et al., 2009), 

into numerical fire danger indices (San-Miguel-Ayanz et al., 2003). Such indices are designed to 

provide a quantifiable measure of the potential for fires to ignite, spread and be suppressed (Noble 

et al., 1980). Examples of fire danger indices include the National Fire Danger Rating System in the 

USA (Deeming et al., 1972), and the Canadian Forest Fire Danger Rating System in Canada (van 

Wagner and Pickett, 1985).  

In Australia, the McArthur’s Fire Danger Rating System has been widely used since its formulation in 

the 1960s to assess the potential for fires to ignite and spread, the difficulty of suppressing fires and 

their potential impact on the community (i.e., property) in forest (i.e., Forest Fire Danger Index, FFDI) 

and grassland (Grassland Fire Danger Index, GFDI) fuel types (McArthur, 1967). FFDI and GFDI are 

divided into six categories (i.e., low, high, very high, severe, extreme and catastrophic) representing 

increasing levels of fire severity, difficulty of suppression  and potential damage to property 

(McArthur, 1967; Noble et al., 1980; Sharples et al., 2009; Bradstock and Gill, 2001). However, the 

index calculation is based only on weather parameters (i.e., rainfall, temperature, relative humidity, 

and wind speed) and does not account for other environmental and human variables (e.g., spatially 

varying distribution of fuel load, fuel type, terrain characteristics, house density, wildland/urban 

interface, and road network) which can have a significant influence on fire behaviour and, 

consequently, on the impact of fire on human communities (McArthur, 1967; Noble et al., 1980; San-

Miguel-Ayanz et al., 2003; Maingi and Henry, 2007; Archibald et al., 2009; Sharples et al., 2009; Price 

and Bradstock, 2010).Therefore, in order to more effectively assess fire danger, it is necessary to 

develop a  robust “consequence-based” modelling framework able to integrate a wider range of 

variables and link their complex network of interactions to the probability of property loss or 

damage. 

Bayesian Belief Networks or Bayes Nets (BN) are a statistical framework capable of analysing 

complex environmental relationships (Johnson et al., 2010; Penman et al., 2011). The networks are 

depicted as directed acyclic graphs with variables and their interactions represented by nodes and 

directed links (Nyberg et al., 2006). Nodes can represent predictor variables in relationships, 

management decisions or outcomes. Directed links can be constructed to represent simple or 
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complex influences among nodes. Values for the predictor variables in the relationships are 

quantified through a series of conditional probability tables (CPTs). These probability tables can be 

defined using a wide range of data, ranging from expert knowledge to predictions from complex 

process models. Outcomes of a BN are represented as probabilities, which can then form the basis 

for risk-analysis and management (Marcot et al., 2001).  

As a consequence, a BN modelling approach is highly suited to the task of representing complex 

interactions among multiple processes and it has been selected to develop a new “consequence-

based” fire danger rating system capable to predict the probability of property loss due to fire. 

Indeed in year 1 of the project, we demonstrated the potential for the approach.  

 

4. Project objectives  

In the first 12 months of the project we constructed an initial BN framework for the implementation 

of a “consequence-based” fire danger rating system. The main characteristics of the modelling 

framework were: 

a) Ability to integrate a wide range of variables (e.g., weather, terrain, fuel, house density, proximity 

to urban interface) and represent fundamental processes (i.e., complex interactions among 

variables) that govern the behaviour of fire and their impact on human communities;   

b) Capacity to adequately predict the probability of property loss due to fire at 10km spatial 

resolution (i.e., 10Km grid cell) and daily time-step; and 

c) Ability for integration with Geographic Information System (GIS) data and production of spatially-

explicit surfaces (i.e., 10km grid cell) representing the probability of property loss. 

The resulting model was parameterised for the Sydney Basin and tested coarsely against real data.   

These results were reported in the previous annual report for the project.  

The objective for the second stage of the project was to develop and test a daily fire danger rating 

Bayesian Network model for two case study areas - Sydney Basin and the central east risk landscape 

in Victoria.  Models were tested against a 20 year time series from 1991 to 2010.  As the Sydney 

Basin model was developed in year 1 of the project, no additional model parameterisation was 

necessary. However, for the Victorian case study no data were available and data needed to be 

analysed to allow for the model parameterisation. Two main studies were required – an ignition 

probability model and a fire behaviour simulation. 

In this report, we present the results of the ignition probability model and the fire behaviour 

simulation study (section 5).  We then describe the resulting Bayesian Network Model, the methods 

for integration with the GIS data (section 6) and finally the results of the 20 year study for each of 

the case study regions (section 7).    

 

5. Data analysis for the Victorian model 
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5.1. Ignition analysis 

i. Overview 

An analysis of ignition probabilities was required for the Central East Risk Landscape of Victoria.  

However given the data provided it was prudent to undertake a broader study on ignition probability 

in Victoria.  A draft manuscript outlining this work is presented in Appendix A.  This section outlines 

the results relevant to the Central East analysis.   

ii. Methods 

Fire history data (ignition point locations and mapped fire boundaries) were compiled from 

comprehensive datasets held by the Country Fire Authority (CFA) and the Department of 

Sustainability and Environment (DSE), spanning 12 years from 1997 to 2009. Ignition causes were 

categorised into 9 types; arson, arson caused by minors, lightning strike, accidental, accidental 

relating to buildings/infrastructure, accidental relating to machinery/vehicles, escaped fire from 

prescribed burning ignition, power transmission lines, and unknown/uncertain. For the study area, 

there were 1463 accidental ignitions, 7847 arson, 263 arson by a child, 4469 escaped fires, 1232 by 

lightning, 1155 started by machinery and 6738 from an unknown cause.  The study focused on 

accidental, arson and lightning ignitions.  All ignition types are considered in the full study in 

Appendix A.  

A range of environmental and anthropogenic-related factors that were hypothesised as potential 

predictor variables of ignitions were included in the analysis (Table 1). Positive topographic position 

index (TPI) values represent locations that are higher than the average of their surroundings (i.e. 

ridges), negative values represent locations that are lower than their surroundings (i.e. valleys), and 

values near zero represent either flat areas or areas of constant slope (Weiss 2001). TPI, slope and 

aspect relative to north-west were calculated across the study area based on a 9-s (25m resolution) 

digital elevation model. Time since fire (TSF, an indicator of potential fuel accumulation) was 

calculated using fire history mapping that has been undertaken by state government authorities 

since 1970. For ignition point locations where no previous fires had been mapped, TSF was set as 40 

years as fire mapping before this time is unreliable. Tenure density was measured by calculating the 

number of properties within a 2-km radius using address locations provided by the Victorian 

Government. Ecological vegetation communities (EVCs) were categorised into 9 broad vegetation 

types; grassland, woodland, mallee, heathland, wetland, shrubland, dry forest, wet forest, rainforest. 

Geology was excluded from the analysis, as there was no expectation that soils would influence 

ignitions, independently of vegetation and topographic effects.  

Table 1 Details of the environmental and anthropogenic predictor variables used in model 

development, including the predicted effect of each variable on ignition probabilities. TSF (time since 

fire), DEM (digital elevation model, 25m resolution), TPI (topographic position index, combines slope 

position and landform category), FFDI (Forest Fire Danger Index), DSE (Department of Sustainability 

and Environment, Victorian Government), CFA (Country Fire Authority, Victoria), BOM (Bureau of 

Meteorology). 
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Variable Details Source 

TSF (yrs) Derived from fire history 
mapping 

DSE, CFA 

Vegetation Type Derived from Ecological 
Vegetation Community 
mapping 

DSE 

Distance to mapped 
watercourse (kms) 

Calculated from vector files of 
watercourse locations 

DSE 

Elevation (m) Calculated from DEM Geoscience 
Australia 

Topographic Position 
Index 

Calculated from DEM Geoscience 
Australia 

Slope (degrees) Calculated from DEM Geoscience 
Australia 

Aspect (degrees) Calculated from DEM, relative 
to north-west 

Geoscience 
Australia 

Log(FFDI) Calculated from BOM data from 
nearest rainfall station 

BOM 

Rainfall (mm) Mean annual rainfall  BOM 

Tenure density (no. 
houses/2kms) 

Calculated from vector files of 
address locations 

DSE 

Distance to mapped road 
(kms) 

Calculated from vector files of 
roads 

DSE 

 

The forest fire danger index (FFDI) is a measure of fire weather and the associated probability of the 

destruction of property based on a combination of temperature, humidity, rainfall, average wind 

speed and longer term drying (Noble et al. 1980; Bradstock et al. 2009). FFDI was calculated for the 

day of the ignition or the date assigned to the random sampling locations (see below) from the 

nearest Bureau of Meteorology weather station that recorded all the required measurements. All 

weather stations were within 60 km of the ignition or random point location, which is likely to 

sufficiently represent the FFDI value at the target point. Given that FFDI is on an exponential scale, 

we took the natural log of FFDI for the analysis. 

Data were analysed using the maximum entropy algorithm (hereafter Maxent) that has been used to 

model fire ignitions (Parisien and Moritz 2009; Renard et al. 2013). Maxent is a robust method for 

presence only data that performs well in comparison to other modelling techniques (Phillips et al. 

2006; Elith et al. 2011; Bar Massada et al. 2013; Renard et al. 2013). Maxent iteratively contrasts 

environmental and anthropogenic predictor values at occurrence locations (i.e. ignition points) with 

those of a large background sample of random locations taken across the study area (Elith et al. 

2011).  

Separate analyses were undertaken for each ignition type. In each analysis, predictor values for each 

ignition point and random sampling point (i.e. background data) were obtained using the stack and 

extract functions of the raster and dismo packages in R v 3.0.0 (R Development Core Team 2011) and 

combined to create the dataset for the analysis. We used the Maxent function in the dismo package 

R which uses the Java MaxEnt species distribution model software 

(http://www.cs.princeton.edu/~schapire/maxent/). From the results for each model, a subset of 
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variables were selected that contributed >5% explanation of the variance before repeating the 

Maxent analysis, in order to increase parsimony in the model. The results reported refer to the 

Maxent results for each sub-model. The response curves from the model output show the marginal 

effect of changing one variable only, whereas the model may take advantage of sets of variables 

changing together.  

In each analysis, 15% of the dataset was withheld and used for testing model performance. The area 

under the curve (AUC) of the receiver operating characteristic (ROC) plot was used to assess 

prediction accuracy of each model (Hanley and McNeil 1982). AUC values range from 0.5 to 1, where 

0.5 is equivalent to a completely random prediction and 1 implies perfect prediction. Model 

performance is considered poor for AUC values between 0.5 and 0.7; moderate for AUC values 

between 0.7 and 0.9 and strong for AUC values larger than 0.9 (McCune and Grace 2002). The 

difference between the AUC values of the training and test datasets provides a measure of how well 

the model (based on the training dataset) predicts ignition locations for data not used in model 

development (i.e. the test dataset).  

iii. Results 

Accidental ignitions in the Central East Risk Landscape were predicted by the FFDI, house density 

and distance to road (Figure 1).  As the FFDI increased the probability of ignition increased 

exponentially.  The probability of an accidental ignition increased with housing density however this 

rapidly decreases above a threshold value of approximately 1.5-2 houses per hectare.  Probability of 

an accidental ignition decreases with distance from a road with the majority of accidental ignitions 

occurring within 150 metres of a mapped road. 

Figure 1: Probability of an accidental ignition as a function of a) log of the forest fire danger 

index; b) log number of houses in a 2km radius; c) log distance to the nearest road 

 

Arson ignitions in the Central East risk landscape were a function of human development – namely 

distance to road and the density of houses (Figure 2).  The probability of an arson ignition increases 

with housing density however this rapidly decreases above a threshold value of approximately 1.5 

houses per hectare.  Probability of an arson ignition decreases with distance from a road with the 

majority of arson ignitions occurring within 150 metres of a mapped road.  

Figure 2: Probability of an arson ignition as a function of a) log number of houses in a 2km 

radius; b) log distance to the nearest road 
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Lightning ignitions in the Central East Risk Landscape were predicted by the FFDI, house density, 

distance to road an elevation (Figure 3).  As the FFDI increased the probability of ignition increased 

exponentially.  The probability of a lightning ignition increased with housing density however this 

rapidly decreases above a threshold value of approximately 1.5-2 houses per hectare.  Probability of 

a lightning ignition decreases with distance from a road. Lightning ignitions were more commonly 

reported at elevations from seas level up to approximately 1000 m a.s.l.  These effects partially 

reflect the co-location of houses and developments with certain topographic features such as ridges, 

as well as the fact that more ignitions are likely to have been attributed to lightning in areas where 

houses are sparse. 

Figure 3: Probability of a lightning ignition as a function of a) log of the forest fire danger 

index; b) log number of houses in a 2km radius; c) log distance to the nearest road and d) 

elevation above sea level 

 

 

 

 

5.2. Fire simulation modelling 

i. Methods 

A simulation study was undertaken using the Phoenix Rapidfire model (Tolhurst et al., 2008) to 

generate data regarding fire size and behaviour under various fire weather and fuel treatment 

scenarios. Phoenix simulates the two dimensional growth of fires in landscapes, including point-scale 

estimates of rate of spread and fire intensity. Surface fire behaviour within Phoenix is based on a 

generalisation of the CSIRO southern grassland fire spread model (Cheney and Sullivan, 1997; 

Page 12 of 83

 



13 
 

 

Cheney et al., 1998) and a modified version of the McArthur Mk5 forest fire behaviour model 

(McArthur, 1967; Noble et al., 1980).   Phoenix uses a range of additional models  (for more detail 

see Tolhurst et al. (2008)), including fuel accumulation models to account for varying fuel loads 

within increasing time since fire, wind modification based on topographic variation and vegetation 

type based on the Wind Ninja program (http://www.firemodels.org/index.php/windninja-introduction - 

Accessed November 2011) and fire spotting (via ember propagation, spread and spot-fire ignition 

(Saeedian et al., 2010).    A 30m resolution digital elevation model was used to estimate the 

influence of topography on fire behaviour, though simulated fire behaviour parameters such as rate 

of spread, intensity and ember density were estimated for 180m grid cells (Tolhurst et al. (2008). 

A series of fire history scenarios were constructed to simulate prescribed fire treatment levels over a 

30 year period.  Each of the three study areas were divided into realistic treatment blocks typically 

bounded by roads or drainage lines.  For each of the study areas, five replicate histories of five levels 

of prescribed burning (PB) effort (0, 1, 2, 5, and 10% per annum) were generated for a thirty year 

period.  Blocks were randomly sampled for treatment until the treatment level was within 0.05% of 

the target burn level.  Bradstock et al. (2012) found random versus strategically targeted treatments 

had little effect on resultant wildfire size, intensity and impact on the urban interface. We modelled 

wildfires on the basis of temporal patterns of weather associated with recorded wildfires for the 

region. This was done using a ten year moving window.  Annual area burnt by wildfire was calculated 

over a ten year window to reflect temporal patterns of wildfires in the region.  Wildfires were 

randomly selected from the fire history database until the threshold value was crossed, with the 

threshold being the average area burnt by wildfires in the previous 10 years adjusted for the 

reduction as a result of prescribed fire.  Prescribed fire and wildfire histories were combined to 

develop 20 (four prescribed burning levels x five replicates) fire history layers for inclusion in the 

Phoenix model.   

The maximum daily value of the McArthur Forest Fire Danger Index (FFDI, Noble et al. 1980) was 

estimated for a period of 40 years at various Australian Bureau of Meteorology weather stations 

within the study area. Temperature, relative humidity, wind speed, wind direction, precipitation, 

cloud cover and curing, beginning at midnight on each day were used to estimate hourly changes to 

FFDI and maximum FFDI for the day. Curing was included, even though the bulk of vegetation 

represented in the study was forest, because patches of grass are occasionally encountered by 

spreading fires. From this time series, daily maximum FFDI was classified into six categories – Low 0-

12, High 12-25, Very High 25-50, Severe 50-75, Extreme 75-100 and Catastrophic. Five replicate days 

were drawn at random from each category for use in simulations within each of the six categories.  

We only considered data from those days on which fires are known to have occurred and from this 

data we only considered either the first day or the maximum FFDI day for a fire.  The first day was 

included as this represents conditions which fires could ignite and spread.  Maximum FFDI days 

represent the worst conditions for a fire and are likely to represent the greatest growth of the fire 

(Bradstock et al., 2009).  Fires were not simulated on successive days as the permutations  became 

prohibitive and most area burned in fires occurs on one day (Cunningham, 1984; Bradstock et al., 

2009).There were no consistent data relating to curing or cloud cover, so for all FFDI classes we 

assumed maximum curing (i.e. a worst case scenario) and 0% cloud cover.   
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A total of 2 000 ignitions were generated in the study area and randomly assigned to one of the 30 

weather streams.  Each ignition was then run for the 25 fire history scenarios.  This resulted in a total 

of 500 000 simulated fires 

Fires were started at 1000 hours to allow the model to calculate meaningful fuel moisture values 

and then allowed to run up until 2330, unless they self-extinguished.   

ii. Results 

A total of 500 000 fires were simulated in the study. Fire sizes ranged from less than one hectare up 

to 297585 hectares.  Fire size increased with FFDI (p<0.001) and decreased with increased 

prescribed burning effort (p<0.001).  Weather had the strongest effect on fire size (Figure 4) with 

prescribed burning effort having a smaller effect within these bounds (Figure 5 - Figure 10). Distance 

travelled was strongly correlated with fire size and for this reason we only present the fire size data 

here.   
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Figure 4: Fire size values under a PB effort of 2% per annum with increasing FFDI. Values 

presented are means with the error bars representing 95% confidence intervals.  
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Figure 5: Fire size values under low FFDI (0-12.5) for increasing PB effort. Values presented 

are means with the error bars representing 95% confidence intervals.  

 

 

Figure 6: Fire size values under high FFDI (12.5-25) for increasing PB effort. Values presented 

are means with the error bars representing 95% confidence intervals.  
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Figure 7: Fire size values under very high FFDI (25-50) for increasing PB effort. Values 

presented are means with the error bars representing 95% confidence intervals.  

 

 

Figure 8: Fire size values under severe FFDI (50-75) for increasing PB effort. Values presented 

are means with the error bars representing 95% confidence intervals.  
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Figure 9: Fire size values under extreme FFDI (75-100) for increasing PB effort. Values 

presented are means with the error bars representing 95% confidence intervals.  

 

 

 

Figure 10: Fire size values under catastrophic FFDI (>100) for increasing PB effort. Values 

presented are means with the error bars representing 95% confidence intervals.  
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6. Bayesian Network Model 

In this section we briefly describe the model and describe variations on the initial model.  

A conceptual model of the network is presented below in Figure 11.  In the model, fuels in the 

landscape are controlled by fuel treatments.  Ignition probabilities are a function of fuels, fuel 

treatment and fire weather.  If an ignition occurs, the distance the fire travels is a function of fuel 

treatment and weather.  The probability an interface is exposed is then a function of the distance 

from the ignition to the interface and the fire weather. The Bayesian Network Model was described 

in detail in the report for year 1.  This section of the report is included as Appendix B for reference.   

Figure 11: A conceptual model of the Bayesian Network model 
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In year 2 the model was moved from the Genie software package to Hugin.  The reason for this was 

that GeNie is a freeware package and therefore there are no guarantees for ongoing support or 

availability of this package. This was considered to be a significant risk if the project were to expand. 

 No changes to the Sydney model have been made since the report at the end of year 1.  

Only minor variations were required to parameterise the Victorian model.  Firstly, we included an 

additional prescribed burning category of 2% per annum to allow for greater accuracy in the 

prediction of distance travelled by a fire.  Secondly, the predictors for the ignition probabilities as 

described above varied from the Sydney model and the model was adjusted to reflect this.  For 

example, the influence of fuel age on ignition was removed as none of the ignition models for the 

Central East Risk Landscape were related to time since fire.  Models for all ignition types were 

simplified and no additional variables were added.  

Significant improvements were required for the integration of the Bayesian Network with the spatial 

datasets.  This was necessary for the validation as we tested the model against 20 years of daily 

data.  The new system was developed not only for validation but also with a view of streamlining the 

operationalization proposed for year 3 of the project. The system consists of three interacting 

components: a controller implemented in the R statistical computing environment (R Development 

Core Team 2011), the Bayesian Network model implemented in Hugin and accessed via the Hugin 

Java API, and a model driver implemented in the Scala programming language (Odersky et al., 2010) 

which links the controller to the model.  

The controller contains a description of each of the input nodes of the Bayesian Network, including 

links to the spatial data sources (rasters, shapefiles, data tables) from which values for each node 
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will be drawn and specific functions to sample those sources when required. For time-invariant 

nodes (e.g. topographic variables) the controller only needs to sample data sources once and cache 

the resulting data, while for other nodes (e.g. weather variables) it samples specific data layers for 

each year or day of the time series. The controller also contains a depiction of the study area 

represented as a vector grid of square cells for which model predictions will be generated. For each 

day of the modelling time sequence, the controller updates the data for all input nodes across all 

grid cells, passes the resulting data set to the model driver for processing, receives model 

predictions from the driver and outputs these as raster layers. 

The model driver is responsible for taking data from the controller and, for each grid cell in the study 

area, loading values into the conditional probability tables of the Bayesian Network model and then 

running the model to generate a prediction. The predictions for all grid cells are then passed back to 

the controller. The principal reasons for working with a model driver, rather than the controller 

interacting with the Hugin API directly, were speed of processing and flexibility. Generating 

predictions from a complex Bayesian network is a computationally intensive procedure which must 

be carried out for a large number of grid cells for each day of a 20 year period. The driver makes this 

possible by running multiple copies of the Bayesian Network concurrently on multi-processor 

hardware, optimally distributing the grid cells across these copies, and compiling the resulting 

predictions into a single output dataset. The driver also allows data and results to be exchanged with 

the controller in more flexible and reliable formats, rather than having to work with the limited 

formats supported by the Hugin software. Finally the driver decouples the Bayesian Network from 

the controller, allowing for the possibility of creating different versions of the controller (e.g. as an 

ArcGIS extension or a web-based service). 

7. Model testing 

Model testing examined the predictive capacity of the models for daily data covering the period 

from 1 January 1990 through to 31 December 2010.  

Data were prepared for each study region.  Environmental and fire history data for the Sydney case 

study were provided by the NSW Rural Fire Service.  These data were provided by the Victorian 

Department of Environment and Primary Industries for the Central East Risk Landscape.  

Meteorological data for both study sites were purchased from the Australian Bureau of Meteorology 

under a research users licenses.  

A 10km output grid was used for both study regions.  All data were summarised to provide 

distributions within each grid cell as inputs to the Bayesian Network model.  In the case of Sydney, 

we also tested a 5km output grid as a preliminary examination of the sensitivity of the model to cell 

size.   

Outputs from the model testing were daily grids predicting the probability of a fire starting in a cell 

and travelling and burning at high intensity at the interface (i.e. fire intensity > 4,000 kW/m).  This 

does not represent the total probability of exposure of the interface within a cell, as fires that reach 

the interface in any particular cell may spread from ignitions in neighbouring cells.  In order to 

address this issue, a secondary filter was applied to the data.  Once the initial model runs were 

complete we then used an upwind scanning procedure to identify the maximum risk an interface 
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may be exposed to.  The scanning angle was fixed as 45 degrees either side of the primary wind 

angle.  Scanning distance was a function of the predicted maximum FFDI based on the values in 

Table 2. 

Table 2: Scanning distances for the post processing of the data 

FFDI  Scanning distance (km) 

Low 3.5 

High 10 

Very high 16 

Severe 25 

Extreme 43 

Catastrophic 50 

 

Figure 12 illustrates the scanning procedure for a single day of the study period (Sydney 5km grid 

resolution). The yellow circle in the two figures highlights an area where individual cell probabilities 

were markedly increased by up-wind scanning, with the median probability of a fire spreading to and 

burning at high intensity at the interface going from 0.06 in the initial model output to 0.13 in the 

final layer. 
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Figure 12: an initial model output for single day in the study period, with arrows indicating 

wind direction, together with the final layer after adjusting cell probabilities of fires reaching 

and burning at high intensity at the interface, by up-wind scanning. The yellow circle highlights 

an area of change (see text for details). 

 

 

 

 

Results for the Sydney Model  

The median predicted probability of a fire spreading to and burning at high intensity at the interface 

was estimated for all cells containing an interface, for each day of the 20 year study period. The 

strong seasonal pattern evident in these values reflected the influence of FFDI (Figure 13). Effects of 

differing grid resolution (i.e. 10 km versus 5 km) were small. There was strong correspondence 

between model predictions and fire history (Figure 14). The sequence of daily median probability 

values, as estimated by the model, for the study period is overlaid with vertical lines indicating the 

actual start dates of large fires (10,000 ha or more) which contacted the interface at some stage 

(identified by analysis of fire perimeter mapping provided by the NSW Office of Environment and 

Heritage). There was good correspondence between the estimates of high probability of fires 

reaching the interface and burning there at high intensity and recorded days with large fires, though 

the number of estimates of relatively high probability exceeded the recorded occurrences. This may 

in part reflect effects of successful suppression in the historical data. On some days with potential 

for large fires, rapid early suppression may have prevented fires from reaching their potential. 

Effects of differing grid resolution (i.e. 10 km versus 5 km) for these data were also small. 
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The relationship was examined (Figure 15) between median estimated daily probability values of 

high intensity fires spreading to the interface for dates during the study period where:  actual 

recorded fires of 1000ha started and  reached the interface, and ;  house loss or damage was 

recorded. A background sample of median model estimates for 100 dates, randomly selected 

outside of the critical event dates was also derived. Estimates were made for the period in which 

house loss data were available (2000-2010).  

 The results (Figure 15)show that the predicted median probability of a fire reaching the interface 

and burning there at high intensity was considerably higher when estimated for the dates of origin 

of both categories of significant recorded fires, than for the random sample of dates. This reflected 

the influence of more severe weather on the significant dates compared with that which occurred 

on dates in the random sample. Median predicted probability of a fire reaching the interface and 

burning there at high intensity was higher for the sample of dates when house loss occurred than for 

the sample of dates on which large fires originated. Again, this may reflect the influence of more 

severe weather on dates associated with house loss.  Effects of grid resolution were small, with 

slightly higher median probabilities predicted for the 5 km grid compared with the 10 km grid (Figure 

15).  

  

Figure 13: median daily probabilities of fires reaching and burning at high intensity at the 

interface for cells, in the Sydney basin, containing an interface,  for the 20 year study period 

(1990 to 2010) aggregated by month 

 
(a) Sydney 10km grid resolution 
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(b) Sydney 5km grid resolution 
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Figure 14: median daily probabilities of fires reaching and burning at high intensity at the 

interface for cells, in the Sydney basin, containing an interface, for the study period (1990 to 

2010) with the dates of significant fires indicated by vertical lines. Dot size is proportional to 

probability value at aid clarity. 

 
(a) Sydney 10km grid resolution 

 

(b) Sydney 5km grid resolution 
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Figure 15: comparison of model predictions of fires reaching and burning at high intensity at 

the interface for cells, in the Sydney basin, containing an interface (median daily probabilities), 

for start dates of fires which are known to have progressed to the interface (left hand box); 

dates for which house loss or damage was recorded (middle box); and 100 randomly selected 

dates (right hand box). Boxes represent the middle two quartiles of values with the median 

value indicated by the horizontal line.  
 

(a) Sydney 10km grid resolution 

 
 

(b) Sydney 5km grid resolution 
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The model showed greater spatial variation and resolution in the prediction of fires reaching and 

burning at high intensity at the interface than estimated FFDI.  This effect was consistent across the 

spectrum of FFDI values from Low (Figure 16) to Extreme (Figure 17).  These results show that areas 

of highest risk areas may potentially be identified by accounting not only for fire weather, but also 

fuels and the distribution of property, along with other features inherent in the landscape that affect 

fire spread.  

Figure 16: comparison of the spatial pattern of FFDI values and model predictions of fires 

reaching and burning at high intensity at the interface on a Low FFDI day 
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Figure 17: comparison of the spatial pattern of FFDI values and model predictions of fires 

reaching and burning at high intensity at the interface on an Extreme day 

 

 

Results for the Victorian Central East Risk Landscape  

The median predicted probability over all interface grid cells was calculated for each day of the 20 

year study period. Similar to the Sydney study area, the strong seasonal pattern evident in these 

values reflected the influence of FFDI (Figure 18). 

Figure 19 shows the correspondence between model predictions and fire history. The sequence of 

daily median probability values for the study period is overlaid with vertical lines indicating the start 

dates of fires (1000 ha or more) which spread to the interface (identified by analysis of fire 

perimeter mapping provided by Victorian Department of Environment and Primary Industries). As 

with the Sydney case study, there was good correspondence between modelled estimates and 

actual occurrences of large fires, and general over-prediction of the instances with relatively high 

probability of fires spreading to the interface and burning there at high intensity.  

Figure 20 shows the distribution of estimated median daily probability values for dates of fires of 

1000ha or more that reached the interface compared to a background sample of 100 randomly 

selected, non-fire dates. As with the Sydney case study, the estimate probability for dates with large 

fires exceeded that generated for the random sample of dates. This probably also reflects the 

influence of more severe fire weather associated with the past incidence of large fires in the 

Victorian case study area.  

 

Page 29 of 83

 



30 
 

 

Figure 18: median daily probabilities of fires reaching and burning at high intensity at the 

interface for cells containing an interface, Victorian Central East Risk Landscape, for the 20 

year study period (1990 to 2010) aggregated by month 

 

Figure 19: median daily probabilities of fires reaching and burning at high intensity at the 

interface for cells, in the Victorian Central East Risk Landscape, containing an interface for the 

study period (1990 to 2010) with the dates of significant fires indicated by vertical lines. Dot size 

is proportional to probability value at aid clarity. 
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Figure 20: comparison of model predictions of fires reaching and burning at high intensity at 

the interface for cells, in the Victorian Central East Risk Landscape, containing an interface 

(median daily probabilities), for start dates of fires which are known to have progressed to the 

interface (left hand box) and 100 randomly selected dates (right hand box). Boxes represent the 

middle two quartiles of values with the median value indicated by the horizontal line.  
 

 

 

8. Discussion and conclusions 

Research conducted in the second year of the project has not only provided baseline information 

valuable for understanding patterns of fire in NSW and Victoria, but has demonstrated that the use 

of a Bayesian Network model has potential for predicting risk to properties posed by fire on a daily 

time step.  The results demonstrate that an understanding of the full range of processes that 

determine the spread of fire from the location of an ignition to the point of potential impact on 

property will have a substantial effect on estimation of potential risk of loss. Insights into such 

processes, and their use in an appropriate modelling framework, can produce spatially explicit 

indices of risk that are more detailed and potentially more incisive and insightful than a fine-scale 

spatial predictions of FFDI. Thus there is great potential to use the BN modelling approach to refine 

and target warnings and risk estimation in a more effective way in the future.   

An empirical basis for understanding ignition probabilities in the two case study areas is a major 

output of this research.  These studies represent some of the first attempts to comprehensively 

model a range of ignition types across large geographic areas and relate them to the key drivers 

(Penman et al. 2013; Appendix A).  Previous work in this area has generally focused on fire behaviour 

models or past ignition locations.  The results of the empirical model results allow for enhanced 

prediction of ignition risk in new areas and under changing climates and patterns of human activity.   
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Temporal patterns in the median probability of fire reaching the interface and burning there at high 

intensity were consistent with information recorded in corresponding fire seasons for the two study 

areas with peaks in the spring/summer for NSW and summer/autumn for Victoria.  The predicted 

probabilities corresponded well with known periods of exposure from large fires (i.e. recorder fires 

reaching the interface) in both study areas.  There were a greater number of days when predicted 

median probabilities were high, but no exposure was recorded.  This may have occurred due to an 

absence of ignitions on these days, or due to the success of suppression resources if ignitions did 

occur.  Alternatively, fires may have occurred but impacted on the interface but at a much smaller 

size than 10000 ha. Scrutiny of the correspondence between the modelled predictions and 

consequences of a greater range of actual fire sizes will be carried out in the future. Regardless, it is 

more important to minimise false negatives (failing to predict risk when it does occur) than false 

positives (predicting risk when it doesn’t occur).  In this sense the performance of the Bayes Net 

modelling approach is promising. 

The model demonstrated spatial variation within the case study regions at a scale useful for 

management. Our model predicted risk as a function of weather, fuels and the built environment 

and this is reflected in the differences between the predictions of FFDI and risk (Figure 16; Figure 

17).  These differences would allow for more localised warnings and information to residents, rather 

than broad scale warnings over fire districts.  Furthermore, the predictions may allow fire 

management agencies to position resources more efficiently to reduce response times and increase 

the probability of initial attack success.  

Sensitivity of risk to major drivers. 

The Bayes Net modelling approach, and associated fire spread modelling using Phoenix Rapidfire, 

has provided several major insights into the sensitivity of risk of loss to major drivers of fire activity 

across landscapes.   

First, the results illustrate the fundamental importance of incorporation of ignition and fire spread 

effects into the prediction of risk of loss, compared with indices based solely on weather. Such 

insights are encapsulated in Figure 17, which illustrates the finer grain of predictive capacity 

resulting from use of the BN model in the Sydney basin compared with spatial predictions of FFDI. 

The comparison of median probability of occurrence of high intensity fire at the interface on days in 

which large fires were known to occur (Figures 14, 19), also reinforces the importance of the 

influence of ignitions along with other external management influences such as suppression . 

Arguably, suppression may have accounted for the bulk of the over prediction of relatively high 

probability events produced by the model. Current simulation tools such as Phoenix Rapidfire have 

relatively limited capacity to predict suppression. These early results indicate that an investment in 

improving suppression modelling capacity may have significant benefits in terms of prediction of risk 

of loss.   

Secondly, fire spread modelling, as illustrated here for the Victorian case study and previously for 

the Sydney region (Penman et al. 2014) indicated that weather was the most influential determinant 

of area burned and potential fire travel distance. Fuel treatment via prescribed burning also 

influenced area burned and fire travel distance but to a lesser degree than weather. Improvements 

in the modelling and prediction of weather, particularly at relatively fine-scale spatial and temporal 
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resolution are therefore likely to offer scope for fundamental improvements in predicting risk of 

loss, via improved fire behaviour predictions.     

Thirdly, weather, as represented by FFDI has a major effect on ignitions as shown in the Victorian 

case study and in published analyses for the Sydney basin (Penman et al. 2013). Such effects 

compound the importance of weather via effects on ignitions in providing a more nuanced 

understanding of risk at relatively fine spatial and temporal scales (Figure 16) and the general effects 

on fire spread. This reinforces the need to improve the accuracy and precision of weather modelling 

and prediction.  

Future directions 

Values presented in the models are indicators of relative risk because they do not encompass all 

influences that will determine the absolute probability of destruction. Nonetheless the model 

encompasses most of the critical elements involved in determining whether a potentially destructive 

fire is likely to reach the interface with property. As shown, such an estimation has the potential to 

give much greater insight into the landscape-level variation in potential loss of property than spatial 

estimates of the fire danger index.  A period of testing is required to determine thresholds in the 

type of probability values produced by the model for management responses.  In part, this will be 

addressed in the proposed program of work for year 3 of the project.  However, the 20 year testing 

has found there is clearly a level of residual risk that forms the baseline (Figure 13; Figure 14; Figure 

18) and risk could be measured as deviations from this value.  

There is still considerable work to be done in the third year of the project.  Firstly, the model will be 

operationalized for the two case study regions and tested in real time scenarios for a fire season.  

The tool will be developed as a web based application that interacts with Bureau of Meteorology, 

NSW Rural Fire Service and Victorian Department of Environment and Primary Industries.  Secondly, 

a sensitivity analysis of the model should be undertaken to determine which components of the 

model the results are most responsive too and ensuring that data in these components are sound. 

Finally, a workshop will be run with end users following the fire season for feedback on the model 

and the web based tool to determine its limitations and value, to identify future model 

development.   
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Modelling the drivers of ignition across 
Victoria, Australia 

R. Gibson1,2, T.D. Penman1, R.A. Bradstock1 

1. Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and 

Environmental Management, University of Wollongong, NSW 2522, Australia 

2. Corresponding author: Email tpenman@uow.edu.au, Phone +61 2 4298 1232 

 

ABSTRACT 

 

1 Introduction 

Understanding spatial patterns of ignitions is required in order to detect areas of high ignition risk 

and apply targeted management strategies (Finney 2005; Vasilakos et al. 2007; Bar Massada et al. 

2013). Fire danger rating models, such as the McArthur Forest Fire Danger Index (FFDI), a commonly 

used fire danger rating system for temperate, forested regions of Australia (Luke and McArthur 

1978; Noble et al. 1980), are largely based on the influence of ambient weather conditions on the 

rate of fire spread (Catchpole 2002; Plucinski 2003; Blanchi et al. 2010). Such models do not include 

a specific ignition component and therefore assume that fires have equal probability of ignition in all 

conditions and locations.  

 

While fire weather may have an overriding influence on fire extent and severity in many ecosystems 

(Bradstock et al. 2009; Parisien and Moritz 2009; Bradstock 2010; Moritz et al. 2010), Parisien et al. 

Page 38 of 83

 

mailto:tpenman@uow.edu.au


39 
 

 

(2010) found that ignitions were one of the main drivers of the spatial patterns of burn probabilities 

across the landscape, along with fuel dynamics (i.e. biomass accumulation with time since last fire 

and fuel moisture). In regions where the determinants of ignitions have been examined, large spatial 

variation has been reported in ignition probabilities (Parisien and Moritz 2009; Reineking et al. 2010; 

Bar Massada et al. 2013; Mundo et al. 2013; Penman et al. 2013). Fires ignited by arson tend to be 

highly clustered around population centres and human infrastructure such as roads (Syphard et al. 

2008; Mundo et al. 2013; Penman et al. 2013); while fires ignited by lightning are more likely to 

occur in older fuels and on ridges (Bar Massada et al. 2013; Penman et al. 2013).  Local variation in 

factors such as fuel characteristics, topography, climate and human population densities and 

infrastructure is therefore expected to influence the spatial distribution of ignitions. 

 

Climate change is predicted to result in an increase in the number of days with elevated fire danger 

indices across much of southern Australia, which is likely to drive an increase in the size and severity 

of bushfires (Hennessy et al. 2006; Enright et al. 2012). However, an increased incidence of severe 

fire weather may also be expected to directly cause an increase in the frequency of ignitions, as 

sparks from various sources (e.g. engines, power transmission lines) have a greater chance of 

igniting a fire under hot, dry and windy conditions. In addition, increased temperatures associated 

with global warming is predicted to cause an increase in the frequency of lightning activity (Price and 

Rind 1994). However, such effects of climate change may not be expected to increase ignition 

probabilities in a uniform manner across the landscape, due to interactions with local variation in 

fuel dynamics, topography and other environmental factors. Understanding the relative influence of 

ambient weather conditions compared to anthropogenic and environmental factors on the spatial 

variation in ignition probability would provide insight into potential changes in ignition probabilities 

that may be expected with climate change.  
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The state of Victoria in south eastern Australia is one of the most fire-prone regions in the world 

with a history of devastating fire events that have resulted in the loss of human life and assets (refs). 

For example, the Black Saturday bushfires in 2009 resulted in 173 people being killed and the overall 

economic cost was estimated to be $AUS4.2 billion (refs). Victoria contains a diversity of bioregions 

from the Victorian Alps, highlands and midland ranges, to the Riverina, mallee and coastal plains. 

While many ecological communities across Victoria have the capacity to regenerate and persist after 

fire, some systems are sensitive to high severity or high frequency fire regimes (e.g. Mountain Ash 

forests and cool temperate rainforests; (Lindenmayer et al. 2011; Worley 2012). Given the range of 

vegetation communities, topography, climate and weather patterns and the distribution of human 

population and infrastructure, the probability of ignition is expected to vary widely across Victoria.  

 

This study aims to examine regional variation in the influence of environmental and anthropogenic 

factors on the probability of ignition. In particular, we considered the relative influence of fire 

weather compared to other potential drivers of ignitions. We also aimed to determine the effect of 

scale on determining drivers of ignitions, by comparing state and regional analyses. This study also 

provided the opportunity to examine the generality of relationships between environmental factors 

and ignition risk that have been previously reported for other regions. Based on the outcomes of 

previous research in other regions, we tested the following hypotheses: 

1. fire weather has a strong influence on the risk of ignition, irrespective of ignition type 

(Penman et al. 2013) refs). 

2. the probability of ignitions caused by humans will be higher closer to the built environment 

(e.g. (Yang et al. 2007; Mundo et al. 2013; Penman et al. 2013)   

3. the probability of ignitions caused by lightning will be higher in areas of native vegetation 

with older fuels (i.e. greater time since fire), at higher elevation and on ridges (Nash and 

Johnson 1996; Penman et al. 2013). 
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4. there will be a high degree of spatial variability at a regional scale in the drivers of ignition 

risk. 

 

2 Methods 

2. 1 Study area 

The study area encompasses the state of Victoria in south eastern Australia (Figure 21). The state is 

divided into 7 land management units by the Victorian Department of Environment and Primary 

Industries. Boundaries of these units are based on water catchments, fire history, bioregions and 

administrative zones. The city of Melbourne has an estimated population size of 4.24 million, the 

second largest population centre in Australia. A further 1.38 million people reside across regional 

and rural Victoria, in varying densities (www.abs.gov.au, accessed 16 July 2013). Extensive clearing 

of native vegetation has occurred across the state for agriculture and human settlement. 

Approximately 46% of the original extent of native vegetation remains, with the majority (>80%) 

protected in national parks and nature reserves. There are approximately 300 ecological vegetation 

communities (EVCs) across Victoria that are assigned to simplified native vegetation groups including 

grasslands, woodlands, shrublands, dry forests, wet forest, mallee, heathlands, wetland, and 

rainforest (DSE 2004). Across the region, average annual rainfall exhibits large variation. For 

example, in the Mallee and Murray Goulburn region (north west) average annual rainfall is 

approximately 300mm, while in the Alpine & Greater Gippsland region (south east), average annual 

rainfall ranges from 1000-1600mm. Similarly, average daily maximum summer temperatures range 

from 33°C in the Mallee and Murray Goulburn region to 24°C in some parts of the Alpine & Greater 

Gippsland region (www.bom.gov.au, accessed 16 July 2013).   
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2. 2 Data compilation  

Fire history data (ignition point locations and mapped fire boundaries) was compiled from 

comprehensive datasets held by the Country Fire Authority (CFA) and the Department of 

Sustainability and Environment (DSE), spanning 12 years from 1997 to 2009. Ignition causes were 

categorised into 9 types; arson, arson caused by minors, lightning strike, accidental, accidental 

relating to buildings/infrastructure, accidental relating to machinery/vehicles, escaped fire from 

prescribed burning ignition, power transmission lines, and unknown/uncertain. The number and 

distribution of each ignition type within each BRL region across Victoria is presented in Table 3 and 

Figure 21. The comprehensive ignitions database used in this study provides a unique opportunity 

to examine drivers of different anthropogenic ignition types (i.e. the separation of arson from 

accidental human-related causes of ignitions). 

 

A range of environmental and anthropogenic-related factors that were hypothesised as potential 

predictor variables of ignitions were included in the analysis (Table 1). Positive topographic position 

index (TPI) values represent locations that are higher than the average of their surroundings (i.e. 

ridges), negative values represent locations that are lower than their surroundings (i.e. valleys), and 

values near zero represent either flat areas or areas of constant slope (Weiss 2001). TPI, slope and 

aspect relative to north-west were calculated across the study area based on a 9-s (25m resolution) 

digital elevation model. Time since fire (TSF, an indicator of potential fuel accumulation) was 

calculated using fire history mapping that has been undertaken by state government authorities 

since 1970. For ignition point locations where no previous fires had been mapped, TSF was set as 40 

years as fire mapping before this time is unreliable. Tenure density was measured by calculating the 

number of properties within a 2-km radius using address locations provided by the Victorian 

Government. Ecological vegetation communities (EVCs) were categorised into 9 broad vegetation 

types; grassland, woodland, mallee, heathland, wetland, shrubland, dry forest, wet forest, rainforest. 
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Geology was excluded from the analysis, as there was no expectation that soils would influence 

ignition risk, independently from effects of vegetation and topographic factors.  

 

The forest fire danger index (FFDI) is a measure of fire weather and the associated probability of the 

destruction of property based on a combination of temperature, humidity, rainfall, average wind 

speed and longer term drying (Noble et al. 1980; Bradstock et al. 2009). FFDI was calculated for the 

day of the ignition or the date assigned to the random sampling locations (see below) from the 

nearest Bureau of Meteorology weather station that recorded all the required measurements. All 

weather stations were within 60 km of the ignition or random point location, which is likely to 

sufficiently represent the FFDI value at the target point. Given that FFDI is on an exponential scale, 

we took the natural log of FFDI for the analysis. 

2. 3 Modelling ignition distributions 

Maxent (Phillips et al. 2006) is a species distribution modelling technique using the maximum 

entropy algorithm that has been used to model fire ignitions (Parisien and Moritz 2009; Renard et al. 

2013). While various methods have been used in ignition modelling, Maxent is a robust method for 

presence only data that performs well in comparison to other modelling techniques (Phillips et al. 

2006; Elith et al. 2011; Bar Massada et al. 2013; Renard et al. 2013). Maxent iteratively contrasts 

environmental and anthropogenic predictor values at occurrence locations (i.e. ignition points) with 

those of a large background sample of random locations taken across the study area (Elith et al. 

2011).  

 

Separate analyses were undertaken for each ignition type within each BRL region as well as for the 

whole of Victoria. In each analysis, predictor values for each ignition point and random sampling 

point (i.e. background data) were obtained using the stack and extract functions of the raster and 
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dismo packages in R v 3.0.0 (R Development Core Team 2011) and combined to create the dataset 

for the analysis. We used the Maxent function in the dismo package R which uses the java MaxEnt 

species distribution model software (http://www.cs.princeton.edu/~schapire/maxent/). From the results 

for each model, a subset of variables were selected that contributed >5% explanation of the variance 

before repeating the Maxent analysis, in order to increase parsimony in the model. The results 

reported refer to the Maxent results for each sub-model. The response curves from the model 

output show the marginal effect of changing one variable only, whereas the model may take 

advantage of sets of variables changing together.  

 

In each analysis, 15% of the dataset was withheld and used for testing model performance. The area 

under the curve (AUC) of the receiver operating characteristic (ROC) plot was used to assess 

prediction accuracy of each model (Hanley and McNeil 1982). AUC values range from 0.5 to 1, where 

0.5 is equivalent to a completely random prediction and 1 implies perfect prediction. Model 

performance is considered poor for AUC values between 0.5 and 0.7; moderate for AUC values 

between 0.7 and 0.9 and strong for AUC values larger than 0.9 (McCune and Grace 2002). The 

difference between the AUC values of the training and test datasets provides a measure of how well 

the model (based on the training dataset) predicts ignition locations for data not used in model 

development (i.e. the test dataset).  

 

3 Results 

There was regional variation in the distribution of ignitions, both within and between ignition types 

(Figure 23). Arson and accidental anthropogenic ignition types displayed a similar spatial pattern 

with a concentration of ignition points around the central portion of the state. By contrast, lightning 

ignitions were relatively more uniform in distribution across the state, though still exhibited some 
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areas of high and low concentrations. Regional variation occurred in the mean values of predictor 

variables, particularly for slope, elevation, rainfall, FFDI and tenure density (Table 5). 

 

In the Victoria-wide analyses, FFDI was included in the model for each ignition type, whereby the 

probability of ignition increased with increasing FFDI values (Figure 24). The highest percentage 

contribution of FFDI occurred in the models of lightning (54.4%), power transmission lines (56%) and 

machinery ignitions (30.4%), while the lowest contribution of FFDI occurred in the models of arson 

ignitions (7.9%; Table 7 and Figure 24). Distance to mapped roads influenced the probability of 

ignition for all ignition types, whereby there was a higher probability of ignition closer to roads. 

Although distance to mapped roads contributed 21.2% to the model of lightning, the magnitude of 

the effect was relatively minor (i.e. a 20% decline in the probability of lightning ignitions, compared 

to >75% for all anthropogenic ignition types; Fig. 4; Table 7). Tenure density influenced the 

probability of ignition for each ignition type, except for lightning. The highest percentage 

contribution occurred for ignitions caused by arson (60.4%) and child arson (59.1%; Table 7). The 

probability of ignition consistently increased with increasing tenure density, and showed a steep 

decline at very high tenure densities in all cases except for power transmission ignitions, which 

remained steady. Rainfall was included in the model of lightning ignitions, whereby the probability of 

ignition increased with increasing rainfall. In addition, power transmission ignitions were influenced 

by vegetation type, whereby a higher number of ignitions occurred in grasslands compared to any 

other vegetation type (Figure 24). In each analysis, there was strong discrimination on held out 

data, with <0.08 difference in AUC values between the test and training datasets (Table 7). The AUC 

values indicated model performance was strong in the majority of cases (i.e. AUC > 0.9). 
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In the analyses of ignition probabilities across BRL regions, the results are largely congruent with 

state-wide results. However, some regional differences were apparent for some ignition types. 

Rainfall was included in a number of regional models of anthropogenic ignition types, in contrast to 

each corresponding state-wide model. In most cases, the probability of ignition declined with 

increasing rainfall (Fig. 8, Fig. 10; Table 5). However, the opposite trend occurred in BRL 5 and 6 (i.e. 

the probability of ignition increased with increasing rainfall). Rainfall was excluded from some 

regional models of lightning, in contrast to the state-wide model of lightning (i.e. BRL 2, 3 and 4; Fig. 

9). Time since fire was included in the models of accidental, arson and lightning ignitions in the 

Alpine & Greater Gippsland region (BRL1), but the percentage contribution to each model was 

relatively minor (7.2%, 3%, 12.6%; Table 5). For arson and lightning ignitions, there was a sharp 

increase in ignition probability of approximately 30% within 5 years since the last fire (Fig. 6 and 9; 

Table 7). Time since fire was not included in the models for any other ignition type in any other BRL 

region.  

 

Elevation contributed to the model of accidental ignitions in the Alpine and North East and Murray 

Mallee and Goulburn regions (BRL 2 and 5; Fig. 5; Table 7). In both cases, the probability of 

accidental ignitions declined with increasing elevation. In the Alpine and Greater Gippsland region 

(BRL1), elevation contributed to the models of arson and machinery ignitions (Fig. 6 and 10; Table 7), 

where the probability of accidental ignitions declined with increasing elevation. Elevation also 

contributed to the models of machinery and escaped fire ignitions in the West Central region (BRL7), 

but the effect on the probability of ignitions increased with increasing elevation (i.e. opposite to the 

anthropogenic ignitions in other regions). Elevation contributed to the models of lightning ignitions 

in the East Central (BRL4) and West Central regions (BRL7; Fig 9; Table 7), where the probability of 

ignition increased with increasing elevation.   
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Topographic position (TPI) was only included in the model of lightning ignitions in the Alpine and 

North East region (BRL 2; Fig. 9; Table 7), where the probability of ignition increased with increasing 

values of the topographic position index (i.e. ridges).  Distance to mapped watercourse was only 

included in the model of accidental ignitions in the Murray Mallee and Goulburn region (BRL 5; Fig. 

5; Table 7), where there was a decline in the probability of ignition with increasing distance to 

watercourses. Vegetation type was only included in the model of lightning ignitions in the Alpine and 

Greater Gippsland, and the Barwon Otway regions (BRL 1 and 3; Fig. 9; Table 7). In both cases, no 

lightning ignitions occurred in mallee vegetation, due to the absence of this vegetation type in these 

BRL regions (Figure 22). However, lightning ignitions also tended to be lower in cleared areas in 

both regions, and in wet forest in the Barwon Otway region (BRL 3).  

4 Discussion 

The results largely conform to the predictions based on previous research in other regions. Fire 

weather consistently influenced ignition probability; FFDI was included in each model, regardless of 

ignition type. However, FFDI had a far greater percentage contribution to the models of lightning 

ignitions compared to arson, and other human-related, accidental ignition types. Human-related 

ignition types (e.g. arson and accidental ignitions) were more likely to occur close to densely 

populated areas and mapped roads, as predicted. The nature of these relationships were consistent 

for both the state and regional scale analyses. However, in contrast to predictions, lightning ignitions 

were not consistently influenced by TSF, elevation or topography, as detected in previous studies. 

Spatial variation in the drivers of ignition probabilities was detected at a regional scale, though in 

most cases, the percentage contribution of the additional variables to the models was relatively 

minor.  
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4. 1 Effects of fire weather 

Under severe fire weather conditions, fires ignite more easily from sparks associated with accidental, 

human-related sources which, under milder weather conditions, would normally not start a fire. 

However, the effects of hot, windy conditions on the rate of fire spread may be the mechanism 

driving the apparent effect FFDI on the probability of ignitions. Fires may still ignite under lower FFDI 

values, but self-extinguish before detection due to a lack of fire weather conditions. The analysis of 

FFDI on ignition probability cannot distinguish between these competing mechanisms, though the 

effect of FFDI on ignitions may be driven by a combination of both processes. Regardless, fires that 

potentially ignite and self-extinguish under mild weather conditions do not significantly contribute 

to the extent of burnt area in the landscape, and therefore, would not be an important 

consideration for targeting ignition management actions. 

 

Fire weather (FFDI) had a far greater percentage contribution to state and regional models of 

lightning (41.6-78.5%) compared to arson (0-12%) and accidental ignitions (8.7-18.4%; Table 7). In 

Victoria, fires ignited by lightning account for 90% of the total area burnt by all fires, but only 30% of 

the number of ignitions (Dowdy and Mills 2011). Given the potential increase in the incidence of 

severe fire weather conditions predicted in this region with climate change (Hennessy et al. 2006; 

Enright et al. 2012) , as well as an increased frequency of lightning strikes (Price and Rind 1994), 

there is a high potential for the rate of lightning ignitions to increase in the future, along with the 

corresponding extent of area burnt.  

4. 2 Regional variation 

Drivers of lightning ignitions showed the highest degree of spatial variation at a regional scale, 

compared to all other ignition types. Time since fire was expected to be a key driver of lightning 

ignitions, because lightning activity is more frequent during the late afternoon hours (Christian et al. 
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2003). Therefore, for a lightning strike to result in a wildfire, the fire will often need to sustain itself 

overnight under more mild weather conditions. Heavy fuels, such as logs, continue to burn under 

mild weather conditions and are more abundant in long unburnt sites (Lindenmayer et al. 1999; Hély 

et al. 2000), thereby increasing the probability that a fire will sustain itself with TSF. However, TSF 

was only detected as a minor contributing factor to the model of lightning ignitions for the Alpine 

and Greater Gippsland region (BRL 1; Table 7).  

 

Elevation and topography were also predicted to have a strong influence on the probability of 

lightning ignitions, but only contributed a small percentage to the models of lightning ignition for 3 

of the 7 BRL regions. There was a higher probability of lightning ignitions on ridges (i.e. higher TPI) in 

the Alpine and North East region (BRL 2; Table 7) and with increased elevation in the East Central 

and West Central regions (BRL 4 and 7; Table 7). The nature of these relationships, where they 

occurred, was consistent with previous studies. The high degree of regional variation in drivers of 

lightning ignitions likely reflects the distribution patterns for topography and population densities. 

The rugged terrain of the Alpine landscape, which dominates BRL 2, has more examples of high ridge 

tops in close proximity to deep valleys. Therefore, there would be a greater chance of detecting an 

effect of topographic position on the probability of lightning ignitions compared to environments 

with more even topography. The East and West Central regions contain the highest population 

densities in Victoria. As such, the effect of elevation on lightning ignitions may be a function of urban 

development patterns, as higher elevation sites may be more rugged and less suitable for 

development, and therefore, would have a greater cover of native vegetation with a higher capacity 

to carry fire. 
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The regional variation detected in this study highlights the effect of scale in determining spatial 

patterns in the drivers of ignition probabilities. While wildfire is an abiotic ecological process, it can 

be considered analogous to biological organisms; both are strongly regulated by environmental 

factors. Like the distribution of species, site-specific factors such as topography and fuel structure, 

will be more important for the occurrence of fire at a fine, local scale whereas climate-related 

factors will prevail at the broader regional scale (Pearson et al. 2004). As such, a finer resolution of 

analysis (e.g. a comparison between different vegetation types within each BRL region), may be 

expected to characterise ignition probabilities as driven by a different set of variables than may be 

detected at the broader state and regional scales. For example, vegetation types in which fire 

propagation is limited by fuel biomass and connectivity may be expected to exhibit a stronger 

influence of TSF on ignition probabilities compared to vegetation types in which fire propagation is 

limited by fuel moisture. Further research would be required to quantify the effect of local 

environmental conditions compared to the broader regional scales. Such knowledge would be 

beneficial in directing appropriate ignition management actions at a local scale.  

4. 3 Future implications 

The results indicate that fire weather is an important driver of ignition probability, particularly for 

lightning ignitions, which account for the vast majority of area burnt in Victoria. The rate of all types 

of ignitions has the potential to increase in the future, given the predicted effects of climate change 

on the incidence of fire weather in this region. Refined predictions of effects of climate change on 

weather patterns at a regional scale in the future may be used in conjunction with the results of the 

regional variation in the additional factors that contribute to the models of ignitions, to allow for 

more accurate predictions of ignition probabilities. 
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The results of this study could be used to develop spatial predictions of ignition risk by 

geographically projecting the modelled determinants of ignitions. This would allow the ability to 

assess the generality and spatial transferability of the models. Furthermore, such predictive models 

of the potential distribution of ignition risk would provide the ability to detect areas where ignitions 

are highly probable but have not recently been observed (e.g. (Parisien and Moritz 2009), which may 

assist in targeting ignition management actions. In addition, models of the determinants of ignition 

probabilities could contribute towards building a comprehensive predictive bushfire risk assessment 

that includes a specific ignition component. Such assessments are needed to refine our 

understanding of controls on fire and fire regimes at broad spatial scales (regional to continental) 

while allowing mapping of the likelihood and potential spatial extent of wildfire under both current 

and future climate scenarios (Parisien and Moritz 2009). 
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Figure 21   Location of the study area and BRL risk land management groups 

 

Figure 22 The variation in the relative proportion of vegetation types across BRL regions. BRL 1 

(Alpine & Greater Gippsland), BRL 2 (Alpine and North East), BRL 3 (Barwon Otway), BRL 4 (East 

Central), BRL 5 (Mallee & Murray Goulburn), BRL 6 (South West), BRL 7 (West Central). 

 

Figure 23 The distribution of each ignition type across each BRL land risk management 

group. Ignition types are: a. accidental, b. arson, c. arson (child), d. lightning, e. escaped fire, 

f. building, g. machinery, h. power transmission lines, i. unknown.  

 

Figure 24 Response curves of maxent output for each ignition type across Victoria.  

Figures 5-11 Regional variation in the response curves of maxent output for each ignition type.  
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Figure 21  
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Figure 23 
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Figure 24 
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Figure 25  
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Figure 26 
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Figure 27 
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Figure 28 
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Figure 29 
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Figure 30 
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Figure 31 
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7 Tables 1 

Table 3 The number of ignitions within each category, across each BRL region and combined across Victoria (1997-2009). Accidental 2 

ignitions associated with buildings and power transmission lines were only examined at the state wide level due to small sample sizes within 3 

each BRL region; BRL 1 (Alpine & Greater Gippsland), BRL 2 (Alpine and North East), BRL 3 (Barwon Otway), BRL 4 (East Central), BRL 5 4 

(Mallee & Murray Goulburn), BRL 6 (South West), BRL 7 (West Central). 5 

Ignition Type No. of Ignitions in each region 

 BRL1 BRL2 BRL3 BRL4 BRL5 BRL6 BRL7 Victoria 

Accidental 199 359 421 1463 907 350 855 4554 

Arson 640 936 1599 7847 2021 863 5568 19474 

Arson (child) 23 51 42 263 96 65 179 719 

Building - - - - - - - 242 

Escaped fire 819 1126 696 4469 1590 1114 2387 12201 

Lightning 1113 1273 244 1232 816 1004 563 6245 

Machinery 161 532 355 1155 1182 558 1064 5007 

Power transmission - - - - - - - 73 

Unknown 748 1357 1086 6738 2712 1158 4155 17954 

 6 
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 7 

 8 

 9 

 10 

Table 4 Details of the environmental and anthropogenic predictor variables used in model development, including the predicted effect of 11 

each variable on ignition probabilities. TSF (time since fire), DEM (digital elevation model, 25m resolution), TPI (topographic position index, 12 

combines slope position and landform category), FFDI (Forest Fire Danger Index), DSE (Department of Sustainability and Environment, 13 

Victorian Government), CFA (Country Fire Authority, Victoria), BOM (Bureau of Meteorology). 14 

Variable Details Source Predicted effect 

TSF (yrs) Derived from fire history mapping DSE, CFA Fuel loads increase with time since fire, which may results in an increased 

probability of ignition  

Vegetation Type Derived from Ecological Vegetation 

Community mapping 

DSE Flammability varies between vegetation types and is expected to influence 

the probability of ignition accordingly 

Distance to mapped 

watercourse (kms) 

Calculated from vector files of 

watercourse locations 

DSE Fuel moisture likely to be higher closer to drainage lines, therefore the 

probability of ignitions may increase with distance from watercourses. 

Elevation (m) Calculated from DEM Geoscience 

Australia 

Lightning strikes occur more frequently at higher elevation sites, increasing 

the probability of lightning ignitions. 

Topographic Position Index Calculated from DEM Geoscience 

Australia 

Lightning more likely on ridges. Fuel moisture higher in gullies, therefore 

ignitions higher on ridges and upper slopes 
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Slope (degrees) Calculated from DEM Geoscience 

Australia 

Fires on flat and very steep slopes are less likely to spread than those on 

intermediate slopes 

Aspect (degrees) Calculated from DEM, relative to 

north-west 

Geoscience 

Australia 

Fuel moisture lower on sites exposed to the north-west, therefore ignitions 

more likely in these areas 

Log(FFDI) Calculated from BOM data from 

nearest rainfall station 

BOM Fire weather conditions may increase the risk of an ignition resulting in a 

sustained fire 

Rainfall (mm) Mean annual rainfall (based on 

what? 30 years centred on 1990) 

BOM Increased rainfall promotes increased fuel mass, increasing the probability of 

an ignition resulting in a sustained fire 

Tenure density (no. 

houses/2kms) 

Calculated from vector files of 

address locations 

DSE Increased housing density reflects increased population, increasing the 

probability of arson ignition 

Distance to mapped road 

(kms) 

Calculated from vector files of 

roads 

DSE Increased probability of arson ignitions closer to roads. 

 15 

Table 5 Regional variation in mean values of each variable used in model development. Vegetation type, a categorical variable, is excluded. 16 

FFDI (Forest Fire Danger Index), TSF (time since fire), BRL 1 (Alpine & Greater Gippsland), BRL 2 (Alpine and North East), BRL 3 (Barwon 17 

Otway), BRL 4 (East Central), BRL 5 (Mallee & Murray Goulburn), BRL 6 (South West), BRL 7 (West Central). 18 

BRL 

Region 

TPI Slope Aspect Elevation Rainfall log(FFDI) TSF Distance 

to water 

Distance to 

mapped road 

log(Tenure 

density) 

1 0.2652 11.14 90.98 415.41 929.9 1.472 28.89 4.34 5.609 0.527 

2 0.05 11.49 85.34 506.8 996.7 1.756 31.71 4.336 5.519 0.618 
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3 0.089 4.325 87.97 149.886 821.8 1.499 37.43 5.332 5.376 1.216 

4 0.277 8.695 88.1 305 1084 1.507 38.28 4.419 4.87 1.654 

5 0.015 2.108 88.53 105.8 421.2 2.554 38.79 5.986 5.506 0.609 

6 -0.001 3.454 88.86 194.46 661.5 1.835 37.79 5.393 5.458 0.684 

7 0.0383 3.96 90.55 336 697.1 1.966 37.07 4.841 4.993 1.719 

 19 

  20 

Page 68 of 83

 



69 
 

 

Table 6 The number of ignitions across Victoria across vegetation types (1997-2009).  21 

Code Vegetation Type 

Ignition Type 

Accidental Arson 
Arson 

(child) 
Building Escaped fire Lightning Machinery 

Power 

transmission 
Unknown 

0 Cleared 3213 15644 590 171 7943 2740 3661 35 13635 

1 Grassland 848 2463 79 34 2720 2203 835 29 2756 

2 Woodland 227 463 25 9 459 232 195 2 585 

3 Mallee 8 11 2 0 20 50 7 0 21 

4 Heathland 26 140 3 4 85 100 20 0 94 

5 Wetland 10 32 2 0 17 10 11 1 38 

6 Shrubland 7 38 0 2 35 54 12 0 35 

7 Dry Forest 195 618 18 19 786 657 233 5 708 

8 Wet Forest 20 65 0 3 133 196 32 1 81 

9 Rainforest 0 0 0 0 3 3 1 0 1 

22 
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Table 7 Summary of Maxent results for each ignition type within each region. Area under the curve (AUC) of training and test data demonstrate the fit of 23 
the model.  24 

Ignition type Region 

AUC values % contribution of each variable 

AUC - 

training 

AUC - 

test 

FFDI Tenure 

density 

Distance 

to 

mapped 

road 

Rainfall TSF Elevation Topographic 

position 

Distance to 

mapped 

watercourse 

Vegetation 

type 

Accidental Victoria 0.915 0.918 18.3 42 39.7       

 BRL1 0.87 0.919 13 48.8 31  7.2     

 BRL2 0.916 0.91 18.4 47.6 28.5   5.5    

 BRL3 0.956 0.967 8.7 41.4 49.9       

 BRL4 0.913 0.911 11.6 41 47.4       

 BRL5 0.939 0.914 9.5 36.2 28.7 12.5  6.3  6.8  

 BRL6 0.89 0.906 17.7 44.3 38       

 BRL7 0.887 0.885 18.2 32.4 49.4       

Arson Victoria 0.94 0.941 7.9 60.4 31.7       

 BRL1 0.914 0.895 12 37.2 39.6  3 8.3    

 BRL2 0.931 0.942 9.5 63.8 26.7       

 BRL3 0.969 0.972  68.3 31.7       

 BRL4 0.914 0.917  64.8 35.2       

 BRL5 0.939 0.931 5.4 69.7 24.9       

Page 70 of 83

 



71 
 

 

 BRL6 0.919 0.915 8.2 56.4 35.4       

 BRL7 0.869 0.872 6.3 61 32.6       

Arson (child) Victoria 0.968 0.967 12.6 59.1 28.3       

BRL1 0.966 0.996  74.5 25.5       

BRL2 0.906 0.939 53.1  46.9       

BRL3 0.977 0.924  78.8 21.2       

 BRL4 0.964 0.942  69.2 30.8       

 BRL5 0.982 0.987 6.3 82.1 11.6       

 BRL6 0.978 0.964 12.1 78.2 9.7       

 BRL7 0.939 0.956 13.7 52.9 33.4       

Lightning Victoria 0.806 0.794 54.4  21.2 24.4      

 BRL1 0.788 0.786 64.6   16 12.6    6.9 

 BRL2 0.793 0.763 78.5  11.7    9.8   

 BRL3 0.85 0.852 48  43.4      8.6 

 BRL4 0.84 0.822 55.9 6.5 29.3   8.3    

 BRL5 0.839 0.817 42.9 13.7 25.3 18.1      

 BRL6 0.83 0.82 71.7  20.2 8.1      

 BRL7 0.82 0.852 41.6  42.9 9.1  6.4    

Escaped fire Victoria 0.892 0.897 14.7 42.3 43       
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 BRL1 0.9 0.819 16.5 47.8 29.4 6.3      

 BRL2 0.88 0.865 15.7 43.5 40.8       

 BRL3 0.896 0.89 20.3 15.6 64.2       

 BRL4 0.863 0.868 13.6 35.4 51       

 BRL5 0.919 0.913 8.3 60.6 26.1 5      

 BRL6 0.882 0.886 21.2 35.3 37.6 5.9      

 BRL7 0.847 0.844 15.7 31.8 44.8   7.7    

Machinery Victoria 0.897 0.887 30.4 28.2 41.4       

 BRL1 0.938 0.878 18.7 25.8 33.1 16.1  6.3    

 BRL2 0.917 0.932 33 18.8 34.2       

 BRL3 0.905 0.916 36.4 7.3 56.3       

 BRL4 0.89 0.907 21.8 22.7 55.5       

 BRL5 0.892 0.898 20.3 44.9 30.3 4.5      

 BRL6 0.879 0.873 42.4 26.7 30.8       

 BRL7 0.86 0.848 34.1 18.4 41.3   6.3    

Unknown Victoria 0.913 0.915 13.4 40.3 46.4       

 BRL1 0.890 0.887 12.7 44.7 42.8       

 BRL2 0.897 0.896 22.6 41.8 35.6       

 BRL3 0.916 0.911 13.8 31.3 54.9       
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 BRL4 0.874 0.883 8.9 38.6 52.5       

 BRL5 0.914 0.903 8.6 61.5 30       

 BRL6 0.893 0.893 17.3 38.1 44.6       

 BRL7 0.852 0.852 11.5 34.3 54.1       

Building Victoria 0.913 0.897 26.9 32.8 40.3       

Power 

transmission 

Victoria 0.915 0.843 56 20.4 16.3      7.3 

 25 

 26 

 27 

 28 

 29 
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Appendix B – Description of the model as appears in the report at the 124 

end of year 1 125 

 126 

Conceptual framework 127 

The conceptual framework of the BN model is illustrated in Figure 3. This model determines the 128 

probability of a fire ignition to result in property loss. Fire ignitions can occur as a consequence of 129 

arson, lightning, powerline faults/failures and other unplanned anthropogenic sources. Once ignited, 130 

the model determines the probability of a fire to self-extinguish. If the ignition is successful and the 131 

initial attack operations are unsuccessful, then the model determines the probability of the fire to 132 

propagate and reach properties (Figure 3). This probability is influenced by the distance to 133 

properties, the spatial arrangement and exposure of the urban/wildland interface and fire weather 134 

condition. The final output of the model provides an estimation of the probability of property loss 135 

(Figure 3).  136 

 137 

Figure 3. Conceptual framework of the Bayesian network developed to predict the probability of property 138 

loss from fire. The direction of the arrows indicates the direction of influence. Node descriptions appear in 139 

Table 1. See text and Figure 4, 5, 6 and 7 for the description of the sub-models. 140 
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 141 

Bayesian network structure 142 

The BN consists of 46 nodes connected through 91 linkages and has been compiled using GeNIe 143 

v.2.0 package (Decision Systems Laboratory University of Pittsburgh, http://genie.sis.pitt.edu/, 144 

accessed August 2012). The BN includes 23 parentless nodes which represent the set of input 145 

variables required to calculate the CPTs of all the child nodes and determine the probability of 146 

property loss. The methodology used to derive the evidences of the CPTs of the parentless nodes is 147 

described in Section 6.1. Name, description and states of all the parentless nodes are provided in 148 

Table 1. 149 

 150 
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 151 

Table 1. Name, description and states of all the parentless nodes of the Bayesian network framework.  152 

 153 

The BN is divided into four sub-models: ‘Fuels model’, ‘Fire weather model’, ‘Ignition model’ and ‘Fire 154 

to property model’ (Figure 3).  155 

The ‘Fuels model’ (Figure 3 and 4) accounts for the fuel arrangement and links it to the potential for 156 

fire to ignite and to spread. This model is based on previous research on fuel accumulation and 157 
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arrangement in Australia (e.g., Keith, 2004; Hines et al., 2010; Watson et al. 2011). This model 158 

accounts for the distribution of five fuel types (i.e., wet sclerophyll forest, dry sclerophyll forest, 159 

grassy woodland, heath and cleared areas) across three distinct topographic features (i.e., ridge, 160 

gully and slope) as a function of time since fire, fire frequency and long term rainfall anomaly (which 161 

is one of the parent nodes of ‘Derived Ridge/Slope/Gully Fuel Type’ and ‘Ridge/Slope/Gully Fuel 162 

Condition’; Figure 4).  Fuels tend to follow a negative exponential increase with time since fire (e.g., 163 

Conroy 1993; Penman and York 2010).  Fire frequency was included to account for the structural 164 

changes that can result from frequent fire in some ecosystems (e.g., Cary and Morrison 1995; Keith 165 

1996;Watson et al. 2004).  The long term drought anomaly accounts for the slower rate of fuel 166 

accumulation that occurs in drier periods (e.g. Penman and York 2010).   The stratification across 167 

topographic features and fuel types allows accounting for variations in treatment and differing rates 168 

of fuel accumulation across the landscape.  The output node (i.e., Landscape fuel condition) has five 169 

states (Low, Moderate, High, Very High and Extreme).  These five states correspond to the levels 170 

described in Hines et al. (2010), and feed into the ‘Ignition model’ and ‘Fire to property model’.  The 171 

proportion of each topographic position in the landscape is used to go from the fuel distribution for 172 

ridges, slopes and gullies to the landscape fuel condition.  173 

 174 

 175 

Figure 4. Structure of the ‘Fuels Model’ of the Bayesian network. The input variables (i.e., parentless nodes) 176 

are in light grey and the model output (i.e., Landscape Fuel Condition) is in red. Parentless nodes description 177 

appears in Table 1. ‘Long Term Rainfall’ is also an input to this submodel as shown in Figure 3.  178 

 179 

The ‘Fire weather model’ (Figure 3 and 5) is used to estimate the Forest Fire Danger Index (FFDI) 180 

based on key input weather variables (i.e., wind speed, wind direction, temperature and rainfall). 181 

FFDI is classified into five categories (i.e., low, high, very high, severe and extreme) and provides a 182 
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“weather-based” indication of the potential for fire to ignite and spread. The network structure and 183 

CPTs for fire weather were learnt using an expectation maximisation algorithm (Korb and Nicholson 184 

2011) from data collected at the Richmond BOM station for the period from 1970 through to 2010.  185 

FFDI was calculated from the equations in Noble et al. (1980).   FFDI represents a key node used as 186 

input in both “Ignition model” and “Fire to property model”. Relative humidity could be predicted 187 

from temperature, wind speed and precipitation.  The model allows for the relative humidity value 188 

to be insert directly or learnt using this relationship if the data are not available for any reason.   189 

 190 

Figure 5. Structure of the ‘Fire Weather Model’ of the Bayesian network. The input variables (i.e., parentless 191 

nodes) are in light grey and the model output (i.e., Forest Fire Danger Index, FFDI) is in red. Parentless nodes 192 

description appears in Table 1.  193 

 194 

The ‘Ignition model’ (Figure 3 and 6) estimates the probability of fire ignition. This model integrates 195 

fire weather (i.e., ‘FFDI’) and fuel availability (i.e., ‘Landscape fuel condition’) information generated 196 

through the ‘Fire weather model’ and ‘Fuels model’ with three variables affecting the probability of 197 

ignition: house density, distance to nearest road and powerline distribution. These variables are 198 

combined to estimate the probability of ignition due to arson, powerline faults/failures, lightning 199 

and other anthropogenic causes. Finally, the different fire ignition probabilities are combined to 200 

estimate the overall probability and number of fire ignitions (Figure 6).The underlying logic of this 201 

model is that proximity to road network, elevated house density and presence of powerline increase 202 

the probability of fire ignition under condition of high fuel availability and severe fire weather. 203 

Relationships and probabilities used in this model are based on the results of an empirical anlaysis of 204 
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ignition probabilities within the Sydney Basin (Penman et al., in press).  These models were then 205 

used to derive the relevant CPTs.  206 

 207 

 208 

Figure 6. Structure of the ‘Ignition  Model’ of the Bayesian network. The input variables (i.e., parentless 209 

nodes) are in light grey and the model outputs (i.e., Number of ignitions) is in red. The outputs of ‘Fire 210 

weather model’ and ‘Fuels model’ are also input (see Figure 3) to the ‘Ignition model’ and are not 211 

represented in this schematic. Parentless nodes description appears in Table 1.  212 

 213 

The ‘Fire to property model’ (Figure 3 and 7) accounts for the process of fire spread and provides an 214 

estimation of the probability of property loss from fire. This is achieved by combining wind direction, 215 

‘Prescribed burning effort’, ‘Initial attack effort’ , ‘Fire weather model’ and ‘Ignition model’ outputs 216 

(i.e., FFDI and Number of ignition, respectively) with information about the spatial arrangement of 217 

properties (i.e., ’Distance to WUI’) and spatially varying landscape characteristics (i.e., Region) 218 

(Figure 7). ‘Prescribed burning effort’, ‘Initial attack effort’ influence the probability of a fire to self-219 

extinguish (‘Self-Extinguish?’ node in Figure 7). Once an ignition has occurred, it may self-extinguish 220 

or continue to grow relative to the wind direction.  The model predicts the probability of a fire 221 

travelling a given distance on bearings relative to the wind as a function of fuels, weather and 222 

region.  Finally, the model predicts the probability of fire having an intensity of ‘zero’, ’suppressible’ 223 

(<4000kW)or ‘uncontrollable’ (>4000kW) at WUI as a function of distance from ignition, fuels, 224 

weather and distribution of the distance from WUI across all directions (‘Distance to WUI’; Figure 7).   225 

Fires are more likely to travel different distances downwind as compared to upwind or parallel to the 226 

wind.  Relationships and probabilities used in this model are based on a simulation study (Penman  227 

et al. in review) conducted in Phoenix Rapidfire (Tolhurst et al. 2008).   228 
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 229 

   230 

 231 

 232 

 233 

Figure 7. Structure of the ‘Fire to property  Model’ of the Bayesian network. The input variables (i.e., 234 

parentless nodes) are in light grey and the model outputs (i.e., Intensity at asset) is in red. ‘Wind direction’, 235 

‘Prescribed burning effort’, ‘Initial attack effort’ and the outputs of ‘Fire weather model’ and ‘Ignition model’ 236 

are also input (see Figure 3) to the ‘Fire to property model’ and are not represented in this schematic. 237 

Parentless nodes description appears in Table 1.  238 

 239 

 240 

 241 
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