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1 Executive summary 
 

The objective of the Probabilistic Framework Project is to develop a new consequence-based fire 
danger rating system able to integrate a wide range of variables and link their complex interactions 
to the probability of property loss. The project aims at delivering a spatially-explicit framework 
capable of generating daily maps representing the distribution of the probability of property loss at 
5km spatial resolution. 

In year two, a “consequence-based” system (developed in Year 1) was refined and applied in two 
case study regions: the Sydney Basin, and the Victorian East Central Risk Landscape. The BN 
framework was successfully integrated with GIS facilities to generate spatially explicit predictions of 
the probability of a fire spreading to and reaching the urban interface and then burning there at high 
intensity (>4000kWm-1, hereafter unsuppressible fires). Overall, the model indicated that the highest 
risk areas may potentially be identified by accounting for not only fire weather, but also fuels, the 
distribution of property, plus features inherent in the landscape that influenced fire spread.  

The objective for the third stage of the project was to develop and test an operational application of 
the daily fire danger rating Bayesian Network model for two case study areas - Sydney Basin and the 
East Central Risk Landscape in Victoria. In this report, we present the results of the operational 
application of the model, quantify sensitivities of the model and finally we make recommendations 
for the future of the modelling approach.    

We developed a prototype Fire Danger Rating (FDR) website for updating fire risk in real-time (30-60 
seconds per case study). Maps are generated through use of landscape data and additional daily 
3pm weather data downloaded from the Bureau of Meteorology.  Across the 2014/15 season spatial 
variation was seen between the predictions from the FDR and that of FFDI.  It is important to note 
that these variations exist despite the fact FFDI is an input into the model influencing ignition 
probability, fire spread and fire intensity.  One of the main reasons for these differences is that FFDI 
only accounts for weather and does not consider topography, fuels, spatial arrangement of assets or 
the directionality of the wind.   

The sensitivity analysis suggested that the model is performing well relative to expectations.  Logical 
relationships and coarse scale patterns are holding true. The results indicate strong reliance on the 
empirical analysis of ignition probabilities in the landscape.  FFDI was found to be the input node 
that required the greatest accuracy. 

A number of recommendations were made by state agencies during an end of study review of the 
project.  These included expanding the FDR website to new landscapes, with particular interest in 
assessing the model for grassland environments.  In addition, the group thought the model had 
considerable capacity for longer term planning of fuel treatments, accounting for changing human 
patterns and future climates.   

Overall, the project has succeeded in delivering a spatially-explicit framework capable of generating 
daily maps representing the distribution of the probability of property loss at 5km spatial resolution. 
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2 Purpose  

The purpose of this document is to describe the activities and results of the third stage of the 
National Fire Danger Rating System – Probabilistic Framework Project. This project is funded by
the Attorney-General's Department. 

3 Background: Fire danger rating systems and Bayesian network 

Fire danger rating systems have been developed in many fire-prone regions globally. These rating 
systems function primarily as a tool for assisting management authorities in a variety of fire 
management activities such as assessing the potential for fire occurrence and issuing fire warnings 
(Sharples et al., 2009). Traditionally, fire danger rating systems combine different environmental 
variables that affect fire behaviour, such as: weather data (e.g. temperature, relative humidity, wind 
speed and direction); terrain properties (e.g. slope and aspect); and fuel characteristics (e.g. type 
and load) (Burgan et al., 1998, Leblon et al., 2001, Matthews, 2009), into numerical fire danger 
indices (San-Miguel-Ayanz et al., 2003). Such indices are designed to provide a quantifiable measure 
of the potential for fires to ignite, spread and be suppressed (Noble et al., 1980). Examples of fire 
danger indices include the National Fire Danger Rating System in the USA (Deeming et al., 1972), and 
the Canadian Forest Fire Danger Rating System in Canada (Canadian Forestry Service, 1984).  

In Australia the McArthur Fire Danger Rating System has been widely used since its formulation in 
the 1960s. This rating system assesses the potential for fires to ignite and spread, the difficulty of 
suppression, and the potential impact of fires on the community (i.e. property), in forest (i.e. Forest 
Fire Danger Index, FFDI) in grasslands (Grassland Fire Danger Index, GFDI) and different fuel types 
(McArthur, 1967). In this system, FFDI and GFDI are divided into six categories (i.e. low-moderate, 
high, very high, severe, extreme and catastrophic) representing increasing levels of fire severity and 
potential damage to property (McArthur, 1967, Noble et al., 1980, Bradstock and Gill, 2001, Sharples 
et al., 2009). However, the indices' calculation is based only on weather parameters (i.e. rainfall, 
temperature, relative humidity, and wind speed) and does not account for other environmental and 
human variables (e.g. spatially varying distribution of fuel load, fuel type, terrain characteristics, 
house density, wildland/urban interface, and road network) which can have a significant influence 
on fire behaviour and, consequently, on the impact of fire on human communities (McArthur, 1967, 
Noble et al., 1980, San-Miguel-Ayanz et al., 2003, Maingi and Henry, 2007, Archibald et al., 2009, 
Sharples et al., 2009, Price and Bradstock, 2010). Therefore, in order to more efficiently assess fire 
danger, it is necessary to develop a more robust “consequence-based” modelling framework that is 
able to integrate a wider range of variables and link their complex network of interactions to the 
probability of property loss or damage. 

Bayesian Belief Networks or Bayes Nets (BN) are a statistical framework capable of analysing 
complex environmental relationships (Johnson et al., 2010, Penman et al., 2011). The networks are 
depicted as directed acyclic graphs with variables, with their interactions represented by nodes and 
directed links (Nyberg et al., 2006). Nodes can represent predictor variables in relationships, 
management decisions or outcomes. Directed links can be constructed to represent simple or 
complex influences among nodes. Values for the predictor variables in the relationships are 
quantified through a series of conditional probability tables (CPTs). These probability tables can be 
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defined using a wide range of data, ranging from expert knowledge to predictions from complex 
process models. Outcomes of a BN are represented as probabilities, which can then form the basis 
for risk-analysis and management (Marcot et al., 2001).  

As a consequence, a BN modelling approach is highly suited to the task of representing complex 
interactions among multiple processes and it has been selected to develop a new “consequence-
based” fire danger rating system capable of predicting the probability of property loss due to fire. 
Indeed in Year 1 of the project, we demonstrated the potential for the approach through a pilot 
study and then extended this with two case studies covering daily risk for a 20 year period (1990-
2010).  

Research conducted in year two of the project provided baseline information valuable for 
understanding patterns of fire in NSW and Victoria.  In year two, a “consequence-based” system 
(developed in Year 1) was refined and applied in two case study regions: the Sydney Basin, and the 
Victorian East Central Risk Landscape. The BN framework was successfully integrated with GIS 
facilities to generate spatially explicit predictions of the probability of a fire spreading to and 
reaching the urban interface and then burning there at high intensity (>4000kWm-1, hereafter 
unsuppressible fires). Overall, the model indicated that the highest risk areas may potentially be 
identified by accounting for not only fire weather, but also fuels, the distribution of property, plus 
features inherent in the landscape that influenced fire spread.  

Data for the networks came from a variety of sources.  Empirical modelling of human ignitions (both 
accidental and arson) and lightning ignitions for Sydney and the state of Victoria has been 
undertaken to support the application of the BN model in each case study. Two simulation studies 
have been undertaken using Phoenix Rapidfire to generate data regarding fire size and travel 
distances under a range of fire weather and fuel treatment scenarios (see Penman et al., 2014 for 
data for the Sydney Basin study). The results were then used to populate the BN model used to 
generate predictions of likelihood of unsuppressible fires reaching the urban interface.  

The predictions derived from the BN model indicated that the probability of unsuppressible fires 
reaching the urban interface was most strongly influenced by weather conditions. In addition, the 
BN predictions indicated that such probabilities were highly sensitive to ignition and fire spread 
information, as conditioned by the totality of weather, terrain and fuel variations. Predictions of risk 
as derived through the incorporation of these elements into the BN framework exhibit considerable 
variation at fine temporal and spatial scales. Therefore, the probabilistic BN framework was 
considered to have the capacity to derive more carefully targeted ‘fine-grained’ warnings of 
potential property loss.  

4 Project objectives  

In the first two stages of the project we constructed an initial BN framework for the implementation 
of a “consequence-based” fire danger rating system and tested it for two case study regions. The 
resulting models were parameterised for the Sydney Basin (New South Wales) and for the East 
Central Risk Landscape (Victoria) and tested against real data at a daily time step for 20 years.  These 
results were reported in the previous annual report for the project.  
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The objective for the third stage of the project was to develop and test an operational application of 
the daily fire danger rating Bayesian Network model for two case study areas - Sydney Basin and the 
East Central Risk Landscape in Victoria. In addition, we undertook a sensitivity analysis of the model 
to guide future model development.  

In this report, we present the results of the operational application of the model (Section 5). We 
then describe the results of the sensitivity analysis (Section 6) and finally we make recommendations 
for the future of the modelling approach (Section 7).    

5 Operational application 
In this section, we briefly outline the model domain, the operational application model through a 
website, the architecture of the site and the results of the website.  

5.1 Model Domain 
FDR BN models for each of the study areas are described in detail in previous reports and therefore 
only a brief overview is presented here.  A conceptual model of the network is presented below in 
Figure 1. In the model, fuels in the landscape are controlled by fuel treatments. Ignition probabilities 
are a function of fuels, fuel treatment and fire weather. If an ignition occurs, the distance the fire 
travels is a function of fuel treatment and weather. The probability an interface being exposed to an 
unsuppressible fire is a function of the distance from the ignition to the interface and the fire 
weather.   

 

Figure 1: A conceptual model of the Bayesian Network model 

The full BN models estimate the daily probability of an fire igniting and impacting upon property at 
an unsuppressible intensity (>4000kWm-1) (Gill and Stephens, 2009). A full list of the nodes in the BN 
and their descriptions is presented in Appendix A.  Predictions for the model are made for a 5km grid 
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across each of the study areas. Unique values are calculated for each 5 x 5 km grid cell on a daily 
basis.  Each cell is considered partially independent of other cells as the BN is not spatially connected 
across cells. Predicted probabilities of the BN are considered independent however, we undertake 
post-processing of the final output to overcome this issue. In short, the post-processing estimates 
risk over a weather dependent neighbourhood of cells, with the neighbourhood size increasing with 
FFDI (see report for year 2 for details).   

5.2 Data inputs 
Two broad data types are used in the BN model for the FDR.  The first type is data that are 
embedded in the BN and are identical for all cells in the respective study areas.  This includes the 
relationships for the probability of ignition and fire spread which have been derived from empirical 
or simulation analysis of data. The second type of data is those that vary between cells and may also 
vary between days. These data are hereafter referred to as input nodes in the model, as they are 
nodes in the BN that require unique inputs.   

Data for the input nodes are probability distributions that replace a node’s Conditional Probability 
Tables (CPTs). There is a CPT for each node that contains the joint probability distributions for the 
variable (Korb and Nicholson, 2011). Root nodes occur at the top of the model and are not 
influenced by other variables in the model.  These nodes have a conditional probability table 
containing a single probability for each state in that node. Child nodes are variables that are 
influenced by one or more variables (parent nodes). These nodes have a conditional probability table 
that represents the probability of a given state in the child node given the state(s) in the parent 
node(s). For any given cell in a raster the CPTs are generated from the distributions that apply in that 
cell. For example, the distribution over all three topographies that exist in the given 5km x 5km cell 
in the grid are calculated, and then entered as the CPT for topography. The list of input nodes and 
the data source used in the model is presented in Table 2.  

Inputs for the majority of nodes were based on static values for the entire season for both models.  
This meant that a single calculation of each variable was made for each cell and these data stored 
prior to the operationalization of the model.  The exceptions were forest fire danger index (FFDI) and 
wind direction at 3pm.  Both of these were sourced daily from the Bureau of Meteorology.   
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Table 1.  Input nodes in the model and the source data for East Central Risk Landscape (ECRL) and Sydney Basin.  
DELWP= Victorian Department of Land, Water and Planning, NSW RFS = New South Wales Rural Fire Service, 
BOM = Australian Bureau of Meteorology.  See Appendix A for a full description of the nodes.    

Input node Source ECRL Source Sydney 
House density (HouseDens) Calculated from DELWP asset 

layer 
Calculated from Land 
Planning Information 
cadastral layer 

Vegetation at ignition (IgFuel) Developed from Ecological 
Vegetation Class layer  

Developed from Keith 
(2004) vegetation layer  

Distance to road (D2RD) Calculated from road layer 
provided by DELWP 

Calculated from road 
layer provided by NSW 
RFS 

Elevation (Elevation) Geoscience 9 sec  digital elevation 
model 

Geoscience 9 sec  digital 
elevation model 

Topography (Topography) Derived from Geoscience 9 sec  
digital elevation model 

Derived from Geoscience 
9 sec  digital elevation 
model 

Region (Region) NA Spatial location reflecting 
different fire behaviours 
see Penman et al. (2014) 

PB effort (PBEffort) Assessment of fuel age in 
surrounding 20 x 20km based on 
DELWP fire history layer 

Assessment of fuel age in 
surrounding 20 x 20km 
based on NSW RFS fire 
history layer 

Ridge/Slopes/Gully fuel type 
(Ridge_/Slopes_/Gully_Fuel_Type) 
 

Developed from Ecological 
Vegetation Class layer 

Developed from Keith 
(2004) vegetation layer 

Ridge/Slopes/Gully time since last 
fire (Ridge_/Slopes_/Gully_TSF) 
 

Derived from DELWP fire history 
layer and Geoscience 9 sec  digital 
elevation model 

Derived from NSW RFS 
fire history layer and 
Geoscience 9 sec  digital 
elevation model 

Powerline distribution 
(Powerline_distribution) 
 

Occurrence of high voltage 
powerlines sourced from DELWP 

Occurrence of high 
voltage powerlines 
sourced from NSW RFS 

Distance to asset on each cardinal 
bearing (W,X,Y,Z) 
(W/X/Y/Zdist2asset)  
 

Calculation based on DELWP asset 
layer and definitions of interface 
of Radeloff et al. (2005) 

Calculation based on 
Land Planning 
Information cadastral 
layer and definitions of 
interface of Radeloff et 
al. (2005) 

FFDI (FFDI) BOM 3 pm FFDI BOM 3 pm FFDI 
Wind direction (wind_dir) BOM 3pm wind direction BOM 3pm wind direction 
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5.3 Website development 
The Fire Danger Rating (FDR) website is a prototype website designed to test the feasibility of a 
national rating system for fire risk that is capable of being updated in real-time. Ultimately, the maps 
are generated by combining the static and dynamic input data into the FDR BN. The website has 
been created to depict risk on a daily basis at a 5km resolution. The website uses Bureau of 
Meteorology (BOM) data through an RSS feed and updates the model, assuming that all other 
variables are static within a given year. The program downloads the 3pm predicted FFDI and wind 
direction, updates the BN, makes a prediction and projects the predictions onto Google Maps. An 
example prediction for the Sydney Basin is shown in Figure 2 and an example projection for the East 
Central Risk Landscape is shown in Figure 3.  Once the program has run once, it checks three times 
per minute for updates in the weather data and updates the output accordingly.  

 

Figure 2: Example of the interface for Sydney, after data has been processed for the day 
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Figure 3. Example of the interface for the East Central Risk Landscape.  

 

5.4 Architecture of the website 

The site consists of a Python backend (which processes the input data with the BNs and generates 
the fire danger maps) and browser-based front-end. 

5.4.1 Backend 

The Python backend uses the CherryPy web framework. This allows the site to be organised as a 
Python class, with class methods corresponding to pages that are delivered to the browser. The main 
web server is located in ‘firedangerserver.py’. 

All the main data processing for the software is contained within the ‘location.py’ file. This file 
contains generic methods for processing the input data using the BNs in a given location. It also 
contains location-specific information needed to run the processing for both Sydney and Melbourne. 
(The organisation for a production system would be different.) 

The ‘location.py’ file also contains the implementation for the pre-processing functions of the static 
data. To run (and re-run) these functions, call the ‘process_input_layers.py’ file from the command 
line (assuming layerDir in settings.py points to the correct fdr_layers directory). Pre-processing can 
be slow, so each step is commented out by default. It is recommended that only one step be 
uncommented and run at a time. 

The main server can be run by calling ‘firedangerserver.py’. This file also contains a scheduling 
thread that will periodically download data and then process that data using the BNs. The scheduling 
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thread will also monitor the output directories and, if the output files for a particular day go missing 
or if new input data is detected, will regenerate the maps for that day. This can be used to re-run 
processing, or run processing anew on new data. 

5.4.2 Frontend 

The frontend is written in HTML, CSS and Javascript. jQuery is used a lightweight UI and AJAX 
framework, and Google Maps is used for the mapping interface. An example of the front end is 
shown in Figure 2. The user is able to switch between Sydney and Melbourne, as well as moving back 
and forth to particular days. In addition, the user can hover over parts of the map to get more 
information about the probabilities of no fire, suppressible fire (<4000kWm-1) and unsuppressible 
fire.   

5.5 Operational testing 
The model was run over the 2014/15 on a standard laptop. The time taken for updating per day 
ranges between 30 and 60 seconds for each landscape, with an average time of 42 seconds. Due to 
the timing of the project, only part of the season was run live.  For the remainder of the season, an 
additional program was developed to retrospectively predict the FDR values for new data.  This 
functionality will also allow for the system to be tested retrospectively for other time periods or in 
other study areas.   

Outputs from the daily analysis for the 2014/15 fire season are supplied with this report in PDF 
format. Presented in the file is prediction from the FDR adjacent to the 3pm FFDI.  Examples from 
both the Sydney Basin and East Central Risk Landscape study regions are provided below (Figure 4 -
Figure 7). Lower risk areas (projected in white, see Figure 4) suggest the probability of a fire starting, 
spreading and impacting on the urban interface is low. Higher risk areas (projected in green, see 
Figure 5) suggest the probability of a fire starting, spreading and affecting the interface is high.  

Across the season variations were seen between the predictions from the FDR and that of FFDI.  It is 
important to note that these variations exist despite the fact FFDI is an input into the model 
influencing ignition probability, fire spread and fire intensity.  One of the main reasons for these 
differences is that FFDI only accounts for weather and does not consider fuels, spatial arrangement 
of assets or the directionality of the wind.   

During the 2014/15 fire season, no fires impacted on property in either study area which limited 
analysis.   
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Figure 4. Example projection for the 28th of Aril 2015, for the Sydney Basin region.  

 

 

 

Figure 5. Example projection for the 27th of November 2014, for the Sydney Basin region. 
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Figure 6. Example projection for the 1st of August 2014, for the East Central Risk Landscape case study region 

 

 

 

Figure 7. Example projection for the 13th of November 2013, for the East Central Risk Landscape case study 
region. 
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6 Sensitivity analysis 
Two different sensitivity analyses were undertaken to examine the sensitivity of the model to the 
structure and the input nodes of the model.  Sensitivity to findings is a bottom up approach across 
the entire network which determines which variables have the greatest influence in the output 
node.  Sensitivity to parameters is a top down examination of the influence of the input nodes on 
the output node.  Combining these two approaches allows us to determine which variables are most 
important in the model prediction and which input nodes we require the greatest confidence in.  

6.1 Sensitivity to findings 
In the BN field, a ‘sensitivity to findings’ analysis identifies what information can be learnt about a 
variable (the target variable) if further information is discovered about other variables (evidence or 
findings variables). This type of analysis assumes that such evidence does not include changes to the 
relationships between the variables in the network. The target variable can be any node – whether a 
root, intermediate or leaf node – and the same applies to the evidence variables. Evidence is never 
entered into the network, instead distributions are entered which is equivalent to adding likelihood 
evidence on the node when it has a uniform CPT. Hence, a sensitivity to findings analysis will provide 
information regarding which nodes are most influential, important or informative in terms of the 
final output. Mutual information between the intensity at the asset (the output node) and all other 
variables in the network as provided in Figure 8 for Sydney and Figure 9 for East Central Risk 
Landscape.    

In sensitivity to findings analyses, it is expected that nodes that are closer to the target (i.e. having 
smaller numbers of arcs in the path) are more informative, unless other nodes happen to be 
particularly significant. Indeed we found these results for both study areas with the intensity and 
asset-reached variables in each cardinal directional ranking highly (z_int,y_int, x_int, w_int). 
However, the self-extinguish node (selfext) and the two ignition related nodes (Number_of_ignitions 
and P_ignit) also rank very highly in the model. This result is particularly important as these nodes 
are several steps removed from the output node.  We have a high degree of certainty in these nodes 
as data for these nodes have been derived from empirical models developed in the Sydney Basin for 
the last 20 years, and in the East Central for the last 10 years. It can also be seen that Forest Fire 
Danger Index (FFDI) is ranked lower than might be expected intuitively (Figure 8; Figure 9).  FFDI is 
one of the parent nodes appearing at the top of the model and is therefore more removed, hence 
given a lower ranking.  However it should be noted that FFDI influences all processes in the model 
including ignition and fire spread which the model is sensitive to.  
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Figure 8: (Sydney Basin) Sensitivity to findings in the existing network (top 20 nodes out of 44) 

 

Figure 9: East Central Risk Landscape - Sensitivity to findings in the existing network (top 20 nodes out of 44) 
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6.2 Sensitivity to Parameters 
A ‘sensitivity to parameters’ analysis was also conducted which involves varying the CPT parameters 
within the model. This type of analysis can be useful for a number of reasons. Firstly, it allows the 
identification of which CPT parameters have the greatest influence on the model conclusions. In 
turn, this identifies which parameters require the highest level of confidence in the input data and 
for which parameters accuracy is less critical.  

A variance-based sensitivity analysis (VBSA) was used to explore the model outputs sensitivity to CPT 
parameters. Full details of this approach are beyond the scope of this report, however in short, a 
VBSA method explores how the variance over the range of inputs of a model (i.e. CPT parameters) 
affects the variance of the output (i.e. beliefs). This analysis has been restricted to consider 
uncertainties across the input nodes. The parameters in the analysis are given as the centre points of 
normal distributions (truncated to between 0 and 1) that have a standard deviation of 0.5 (that is, 
half the probability interval). 

Figure 10 and 11 show the results of the analysis for Sydney Basin and East Central Risk Landscape.  
Numbers on this graphic are sensitivity indices with the First Order column describing the effect of a 
node in isolation from other nodes, while the Total Order column is describing the effect of a node 
when it is varying in conjunction with other variables. Higher numbers indicate higher sensitivity. 
Results presented here are approximate as the approach is a simulation approach to sensitivity.   

 

Figure 10: Sydney Basin - Sensitivity to the root input nodes 

 



19 
 

 

Figure 11: East Central Risk Landscape - Sensitivity to the root input nodes 

 

In both regions, the results of the model were most sensitive to changes in FFDI when considering 
both the first order and total order values. This result is to be expected but supports the 
functionality of the model.  A large range of studies have highlighted the pivotal role FFDI plays in 
predicting fire extent and impact on assets (Bradstock et al., 2009, Cary et al., 2009, Blanchi et al., 
2010, Gibbons et al., 2012, Price and Bradstock, 2013, Blanchi et al., 2014, Penman et al., 2015).  

There was variance in the secondary influences between the two study areas.  In the Sydney Basin 
model, the model was also sensitive to values which relate to fuel loads, in particular ridge time 
since fire (Ridge_TSF) is particularly significant. In contrast, the East Central Risk Landscape model 
was sensitive to values for the built environment- (distance to road (D2RD) and house density 
(HouseDens)), fuel type at the ignition point (IgFuel) and wind direction (wind_dir).  These results 
probably reflect the fact that the eastern portion of the East Central Risk Landscape study area is 
primarily forested areas with few roads and houses, except on the western fringe which would 
primarily be exposed to fires under easterly winds (an uncommon occurrence in this landscape).  
This pattern doesn’t hold in the western and southern parts of the study areas, where assets are 
likely to be exposed to fires from most directions.  In contrast, assets in Sydney Basin are exposed in 
most compass directions for many ignition points.   

6.3 Conclusions of the sensitivity analysis 
It is vital to ensure the inputs in any model are rigorously collected and judiciously used.  Overall, the 
sensitivity analysis suggests that the model is performing well relative to expectations.  Logical 
relationships and coarse scale patterns are holding true. The results indicate strong reliance on the 
empirical analysis of ignition probabilities in the landscape.  Further work to refine these models will 
be valuable, if new data become available. Simulation study results were less critical but still 
important.  FFDI was found to be the input node that required the greatest accuracy.  In our study, 
FFDI was taken as a single value for 3pm based on forecast information. This could be improved by 
better understanding the accuracy of these forecasts and including these uncertainty values into the 
model. This would be possible by comparing forecast information with observations at BOM 
stations.   
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7 Recommendations for future applications 

On June 12th 2015 a workshop was held with representatives from the Victorian Department of 
Environment, Land, Water and People (DELWP), the New South Wales Rural Fire Service (RFS) and 
Victorian Country Fire Association (CFA). The model was presented and discussed in detail, with 
representatives having the opportunity to provide feedback on both the model and the web based 
tool to determine its limitations and value. The suitability of the model was discussed and 
opportunities for future developments were outlined.  

Presented below is a summary of the outcomes from the workshop and directions for future 
development.  

1. Testing the models applicability to other areas.  
The model could be tested in other study locations to determine the applicability of existing 
platforms to accurately predict risk in new locations. We would expect predictive accuracy to be 
highest for those areas that have similar environmental conditions to the two case study 
landscapes. Models should not be applied outside forested systems as they have not been 
developed for these environments (see point 2).    

2. The system, as it currently stands, is heavily focused on forested areas.  
Analysis of ignition data and simulation studies in the project has focused on two heavily 
forested regions.  Attempting to develop the model for one or more grassland regions would 
provide insight as to the suitability of this model for application at the state and national level.  

3. An examination of the potential to integrate the BN model (or aspects thereof) with the 
National Fire Danger Rating Project.  
Aims of this project and the national fire danger rating project are converging. The models 
developed in this study broadly cover the areas identified as being important by the national fire 
danger rating project.  One key area missing from the current BN that is required in the National 
Fire Danger Rating Project is suppression. While not explicitly included in the FDR model used 
here, this is a feasible (and useful) addition to the model. Different suppression techniques could 
be easily added through the models of Plucinski (Plucinski, 2012, Plucinski et al., 2012) and 
Penman et al. (2013). Preliminary testing suggests this is feasible and relatively accurate.  

4. Consideration of evaluating risk assessments of different management approaches.  
The model presented here was developed for a daily assessment of fire risk to people and 
property.  The fuel layers can easily be altered to include various fuel management approaches.  
Using the BN model in an annualised format would allow users to assess changes in risk as a 
result of fuel management (Penman et al., 2014, Penman et al., 2015), or changing patterns of 
urban development.  Such information would provide management agencies with a quantitative 
assessment of alternate fuel strategies. Furthermore, this analysis could incorporate current and 
future climate scenarios will be important to effectively calculate future risk (and changes in the 
level of risk) in different landscapes.  
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8 Conclusion 
Over the three years of the study we have demonstrated the value of the BN approach for predicting 
fire risk to people and property at interface. The project has taken static BNs to a spatial application 
which has ultimately been used through a web interface to predict daily risk values at the interface.  
These steps have required considerable analysis of data through empirical and simulation studies 
which in themselves have presented new research findings.   

The underlying philosophy of the approach is that patterns of fire behaviour and risk are relatively 
predictable when the uncertainty is explicitly considered.  Our BN approach does not seek to remove 
the need for fire behaviour simulation, rather it builds on fire simulation studies to rapidly evaluate 
risk and highlight areas of potential concern.  Comparisons between the BN approach and the burn 
probability approach (Wei et al., 2008, Parisien et al., 2010, Cochrane et al., 2012) that has been 
widely applied in Australia through management agencies would be valuable in developing a 
comprehensive national fire danger rating system.  

One of the major hurdles that will need to be addressed in the application of our proposed system is 
the interpretation of risk values. Our model predicts the risk of an unsuppressible fire at the 
interface on a scale of 0 to 1. These values are predictions across the probability of a fire igniting, 
spreading and impacting at an intensity >4000kWm-1.  Due to the complexity of these relationships 
and the interactions between the model components, these values should not be considered an 
absolute risk value, i.e. 0.1 does not necessarily equal a 10% risk. Therefore, the challenge is 
determining threshold values of concerns.  Existing research in this project can be used to inform 
that debate, however decisions will need to be made by managers as to when actions are triggered.  
Given the potential implications of an incorrect decision, determining the appropriate threshold 
values will require careful consideration and debate.   

The overall aim of the three year project was to test whether a risk based approach to fire danger 
rating systems was possible, which we have demonstrated to be true.  Models presented here are 
readily updatable and are a starting point for the development of a more comprehensive system.  
The question as to whether this is the best system remains subject to debate. To answer this 
question satisfactorily would require a quantitative comparison of all available candidate models.  
The final answer may indeed be an ensemble modelling approach.     
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9 Appendix A: Input nodes in the model, node descriptions and 
source data. 

Node name in BN Node description Source of the input 
data 

arson_fire The probability of a fire starting from 
arson 

Empirical analysis 

D2RD The distance from mapped road Static spatial data  
Elevation Elevation above sea level Static spatial data 
FFDI Forest Fire Danger Index BOM dynamic data 
Gully_Fuel_Condition The fuel condition in the gully Static spatial data 
Gully_Fuel_Type The fuel type in the gully Static spatial data 
Gully_TSF Number of years since there was last a 

fire in the gully 
Static spatial data 

HouseDens The density of housing Static spatial data 
IgFuel The presence of dry forest (or not) at 

the point of ignition.  
Static spatial data 

IntAsset The intensity of fire at assets Simulation analysis 
Landscape_Fuel_Condition_ This node is averaged across each cell 

for the ridge, slope or gully 
Static spatial data 

Lightning_fire Probability of a fire being caused by 
lightning  

Empirical analysis 

Number_of_ignitions The total number of ignitions Empirical analysis 
Other_anthro_ignition The probability of accidental 

anthropogenic ignitions.  
Empirical analysis 

P_ignit Probability of total ignitions Empirical analysis 
PBEffort Prescribed burning effort Empirical analysis 
Powerline_distribution Presence of powerlines Static spatial data 
Powerline_ignition The probability of an ignition caused 

by a powerline 
Empirical analysis 

Region Sydney only, three broad fire 
landscapes were identified. This node 
identifies which landscape values are 
to be used.  

Static spatial data 

Ridge_Fuel_Condition The fuel condition at the ridge Static spatial data 
Ridge_Fuel_Type The fuel type at the ridge Static spatial data 
Ridge_TSF Number of years since there was last a 

fire at the ridge 
Static spatial data 

selfext Probability that a fire will self-
extinguish 

Empirical analysis 

Slope_Fuel_Condition The fuel condition on the slope Static spatial data 
Slopes_Fuel_Type The fuel type on the slope Static spatial data 
Slopes_TSF The number of years since there was 

last a fire on the slope 
Static spatial data 

Topography Ridge, slope and gully.  Static spatial data 
W_Int This node identifies the fire intensity 

at a given distance in the ‘W’ 
direction (see Figure 1). 

Simulation analysis 
with static spatial data 
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Node name in BN Node description Source data 
Wbearing Projected bearing. This node defines 

the direction, i.e. the compass bearings 
for ‘W’ direction (see Figure 12 

Simulation analysis 

Wdist2asset This node represents  the distance 
from potential  ignition point to 
mapped assets in the ‘W’ direction 
(see Figure 12).  

Simulation analysis 
with static spatial data 

wind_dir This node represents wind direction BOM dynamic data 
Wreachasset Probability of a fire moving from the 

ignition point to an asset in the ‘W’ 
direction (see Figure 12). 

Simulation analysis 
with static spatial data 

X_Int This node identifies the fire intensity 
at a given distance in the ‘X’ direction. 

Simulation analysis 
with static spatial data 

Xbearing Projected bearing. This node defines 
the direction, i.e. the compass bearings 
for ‘W’ direction (see diagram below). 

Simulation analysis 
with static spatial data 

Xdist2asset This node represents the distance from 
potential ignition point to mapped 
assets in the ‘X’ direction.  

Simulation analysis 
with static spatial data 

Xreachasset Probability of a fire moving from the 
ignition point to an asset in the ‘X’ 
direction. 

Simulation analysis 
with static spatial data 

Y_Int This node identifies the fire intensity 
at a given distance in the ‘W’ 
direction. 

Simulation analysis 
with static spatial data 

Ybearing Projected bearing. This node defines 
the direction, i.e. the compass bearings 
for ‘Y’ direction (see diagram below). 

Simulation analysis 
with static spatial data 

Ydist2asset This node represents the distance from 
potential ignition point to mapped 
assets in the ‘Y’ direction.  

Simulation analysis 
with static spatial data 

Yreachasset Probability of a fire moving from the 
ignition point to an asset in the ‘Y’ 
direction. 

Simulation analysis 
with static spatial data 

z_Int This node identifies the fire intensity 
at a given distance in the ‘Z’ direction. 

Simulation analysis 
with static spatial data 

Zbearing Projected bearing. This node defines 
the direction, i.e. the compass bearings 
for ‘Z’ direction (see diagram below). 

Simulation analysis 
with static spatial data 

Zdist2asset This node represents the distance from 
potential ignition point to mapped 
assets in the ‘Z’ direction. 

Simulation analysis 
with static spatial data 

Zreachasset Probability of a fire moving from the 
ignition point to an asset in the ‘Z’ 
direction. 

Simulation analysis 
with static spatial data 
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Figure 12: A diagrammatic explanation of wind direction and the use of “X, “Y”, “Z”, and “W” directions for a) a 
SW wind and b) NW wind.  The X direction is the 45 degrees either side of the primary wind axis (in black).   The Y 
direction is 45 to 90 degrees from the primary axis, Z direction is 90 to 135 degrees and the W direction is 135 to 180 
degrees from the primary axis.  
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