

Monitoring winds over complex terrain with a PAWS anemometer array

Rachael Griffiths *PhD Candidate* Email: <u>rachael.griffiths@student.adfa.edu.au</u> *Supervisors: A/Prof Jason Sharples, Dr Leesa Sidhu, Prof. Graham Thorpe (BNHCRC)*

Research Aims

Characterising Wind Response

Flea Creek Valley

Brindabella National Park, NSW

Flea Creek Valley

Brindabella National Park, NSW

Portable Automatic Weather Stations (PAWS)

Davis Vantage Pro 2

Portable Automatic Weather Stations (PAWS)

Davis Vantage Pro 2

Portable Automatic Weather Stations (PAWS) Davis Vantage Pro 2

Autumn 2014

30 Minute Data from April to July

Autumn 2014

30 Minute Data from April to July

Autumn 2014

30 Minute Data from April to July

Portable Automatic Weather Stations (PAWS)

Davis Vantage Pro 2 with Raspberry Pi

lever Stand Still UNSW Canberra		School of Physical, Environmental and Mathematical Sciences					
Г							
PAW30							
PAWS7 -	•						
	_						
-	10-						
PAWS12 -	Q		-		6		
PAWS2							
PAWS4 -						2	
PAWSB							
-3							
PAWS3							
PAWS9			-				
-							
Paw51 —	(C						
PAWS5			•				
-	ÎÎ		1	Î	Ĩ.	1	Ĩ
30-06-2014 20-07-2014	4 09-08-2014 29-08-201	14 18-0	09-2014 08-10-2014	28-10-2014	17-11-2014	07-12-2014	27-12-2

Winter-Spring 2014: 1Minute Data

Modal Timings

Future Directions

Never Stand Still

UNSW Canberra

School of Physical, Environmental and Mathematical Sciences

Data Analysis

- Time lag on 1 minute interval data
- Modal probabilities
- Analyse specific events
- Analysis of secondary variables
- Modelling wind response distributions

Data Collection

- Improve battery life with RPi
- Second Location in 2015?

Acknowledgements

Never Stand Still

UNSW Canberra

School of Physical, Environmental and Mathematical Sciences

Thanks to Jason Sharples and Leesa Sidhu for supervision, access to previous work and data, and help with initial deployment.

Thanks also to **Bob Cechet** and **Ben Quill**, as well as **Peter**, **Nick**, **Katie**, **Barbara** & **Tim** for help with initial deployment and continued data collection. Thanks to **Colin Symons** for work in developing and deploying the Raspberry Pi system.

Thanks to NSW National Parks & Wildlife Service for allowing the research to be conducted in Brindabella National Park.

Final thanks to the Bushfire & Natural Hazards CRC for funding and support for my PhD project.

Any Questions?

Data Specifications

Never Stand Sti	Never Stand Still UNSW Canberra School of Physical, Environmental and Mathematical Sciences				
	Sensor Type	Resolution	Range	Accuracy	Update Interval
Barometric Pressure		0.1hPa/mb	540 to 1100 hPa/mb	±1.0hPa	1 min
Clock		1 minute		±8 sec/month	
Humidity	Film capacitor element	1%	1 to 100%	±3% (0 to 90% RH), ±4% (90 to 100% RH)	50sec to 1min
Rainfall	Tipping bucket, 0.2mm per tip, 214cm ² collection area	0.2mm	0 to 999.8mm	±3% of total or ±0.2mm (1 tip), whichever greater	20 to 24 sec
Solar Radiation		1W/m²	0 to 1800W/m ²	±5% of full scale	50sec to 1min (5min when dark)
Temperature	PN Junction Silicon Diode	0.1°C	-40 to +65°C	±0.5°C (above-7°C), ±1°C (below-7°C)	10 to 12 sec
Wind Direction	Wind vane with potentiometer	1°	0 - 360°	±3°	2.5 to 3 sec
Wind Direction Display		22.5°	16 compass points	0.3 compass point	
Wind Speed	Solid state magnetic sensor	0.4m/s	0.5 to 89m/s	± 5% or ±1m/s, whichever greater	2.5 to 3 sec

WeatherLink with USB Data Logger (#6510USB)

Never Stand Still

UNSW Canberra

School of Physical, Environmental and Mathematical Sciences

Data Logger Archived Data

The Data Logger stores up to 2560 archive records (one 52-byte record per archive interval) for later transfer to your computer. The archive records are stored in 128K of non-volatile memory; protecting the data even if the console loses power. Maxima, minima, averages, and totals are taken over the archive interval.

Archive Record Data	Time/Date of Record, Inside Temperature (last or average), Outside Temperature (last or average), Maximum Air Temperature, Minimum Air Temperature, Wind Direction (dominant), Wind Speed (average), Maximum Wind Speed, Wind Direction at Maximum Wind Speed, Rainfall (total), Rain Rate, Inside Humidity (last), Outside Humidity (last), Barometric Pressure (last), Solar Radiation, Hi Solar Radiation, UV, Hi UV, Evapotranspiration, Leaf Temperature (2), Leaf Wetness (2), Extra Humidity (2), Extra Temperature (3), Soil Temperature (4), Soil Moisture (4), Wind Samples, Wind Transmitter ID, Length of Archive Interval, ISS Reception
Archive Interval	User-selectable from the following intervals (in minutes): 1, 5, 10, 15, 30, 60, or 120

Archive Storage Capacity (the amount of time before the archive is completely filled):

1 Minute Archive Interval	42 hours
5 Minute Archive Interval	8 days
10 Minute Archive Interval	17 days
15 Minute Archive Interval	26 days
30 Minute Archive Interval	53 days
60 Minute Archive Interval	106 days
120 Minute Archive Interval	213 days