

The effects of turbulent plume dynamics on long-range spotting

Will Thurston, Kevin Tory, Robert Fawcett, Jeff Kepert High-Impact Weather team, Bureau of Meteorology; Bushfire & Natural Hazards CRC

- The lofting and transport of firebrands ignites spot fires downwind from the primary fire
- Spot fires lead to accelerated and unpredictable fire spread
 - Accelerated: Embers cause the fire to jump ahead. Upper-level winds are often faster than near-surface winds,
 - *Unpredictable*: How far will it spot? Upper-level winds are often in a different direction from the near-surface winds
- A better knowledge of processes involved in spotting will improve our ability to predict fire spread
- There is evidence for very long-range spotting in excess of 30 km, e.g. Kilmore East fire during Black Saturday

FLIR footage – Tomahawk fire

Credit: Tim Wells, CFA

- We use a **two-stage** modelling process to investigate how **turbulent plume dynamics** may affect spotting:
 - 1. Perform high-resolution simulations of idealised bushfire plumes in different wind conditions using a large-eddy model (LEM)
 - 2. Use the four-dimensional (3 space, 1 time) velocity fields from the LEM to calculate the trajectories of hundreds of thousands of virtual firebrands assigned a constant fall velocity
- Trajectory calculations are then repeated for a temporal mean "steadystate" plume to asses the effect of in-plume turbulence on transport

Large-Eddy Model configuration

- Idealised setup (no moisture, radiation, Coriolis, topography)
- Periodic lateral boundary conditions
- No-slip lower boundary
- Free-slip upper boundary (+ Newtonian damping layer in upper 2 km)

- Simulate realistic turbulent boundary layers for a range of wind speeds (typically not done in idealised plume studies):
 - Initialise model with horizontally homogeneous potential temperature and wind profiles
 - Apply random perturbations (\pm 0.2 K) to potential temperature field
 - Run model until turbulence (defined by domainaveraged TKE) has spun up to quasi-steady state

- Generate a "fire" plume by applying an intense circular surface heat flux anomaly (Q = 100,000 W m⁻², radius = 250 m)
 - No feedback of atmosphere onto fire behaviour
 - No surface spread
 - Allows us to isolate the way plumes respond to wind

Model "initialisation" – plume generation

 Generate a "fire" plume by applying an intense circular surface heat flux anomaly (Q = 100,000 W m⁻², radius = 250 m) and release passive tracer

AZARDSCRO

Tracer visualisation – 5 m s⁻¹ wind

- Lower two-thirds of plume is within boundary layer:
 - Relatively smooth
 - Small instability at top of smooth updraft
 - Consists of a counterrotating vortex pair
- Upper section of plume above the boundary layer:
 - Plume is much more turbulent

HAZARDSCRO

Tracer visualisation - 5 m s⁻¹ wind

- Lower two-thirds of plume is within boundary layer:
 - Relatively smooth
 - Small instability at top of smooth updraft
 - Consists of a counterrotating vortex pair
- Upper section of plume above the boundary layer:
 - Plume is much more turbulent
 - Meandering above the boundary layer is more prominent

HAZARDSCRO

Tracer visualisation – 15 m s⁻¹ wind

- Plume is turbulent from the surface upwards
- Plume is much more bent over
- Plume exhibits pulsing
- Plume is more dispersed
- Plume meanders from nearsurface to top

Plume dynamics – 5 m s⁻¹ wind

Plume dynamics – 5 m s⁻¹ wind

Plume dynamics – 15 m s⁻¹ wind

Plume dynamics – 15 m s⁻¹ wind

Particle transport calculations

- Three-dimensional velocity fields from the LEM are used to drive a simple Lagrangian particle-transport model
- Particles are initialised near the base of the plume and advected by the velocity field plus a constant fall velocity of 6.0 m s⁻¹
- Particles are released in a cylindrical "blob" of radius 250 m, located between z = 50 and z = 100 m.
- 8265 particles released every 5 s for 15 minutes, resulting in almost 1.5 million particles being tracked per plume

• Particle positions integrated forwards until they land

Firebrand transport – 5 m s⁻¹ wind

8265 particles released every 5 s for 15 min = 1,487,700 total

Only every 100th particle is shown here

Firebrand transport – 5 m s⁻¹ wind

100 random trajectories – 5 m s⁻¹ wind

Firebrand transport – 15 m s⁻¹ wind

Firebrand transport – 15 m s⁻¹ wind

100 random trajectories – 15 m s⁻¹ wind

Two-dimensional landing distributions

How does the *turbulent* component of the plume dynamics affect ember transport...?

Steady-state plume calculations

Firebrand transport – 5 m s⁻¹ wind

Mean vs time-varying plume

Firebrand transport – 15 m s⁻¹ wind

Mean vs time-varying plume

Two-dimensional landing distributions

Two-dimensional landing distributions

Turbulent / non-turbulent statistics

/hm/

>

Ember flight time

- Large-eddy simulations of bushfire plumes have been combined with ember trajectory calculations
- Trajectories heavily dependent on plume structure
 - Weak winds -> plume vortices -> lateral spread
 - Strong winds -> turbulent plume -> longitudinal spread
 - Two-dimensional landing-position distributions constructed
 - In-plume turbulence causes spread in landing-position distribution
 - In-plume turbulence can increase maximum spotting distance by a factor of more than two
 - Potential for spotting parameterization development

