

Cyclone Resilience through Academic and Industry Partnership

Josh Cooney, Suncorp Daniel Smith, Cyclone Testing Station (CTS)

Why housing? Common but complex SUNCORP

- » They are where we shelter so have to be secure
- » Traditional process evolved from holding roof up not down
- » Many elements, closely spaced
- » There is load sharing, so no easily defined load path

Building community cyclone resilience through academic and industry partnership

Local Wind Field Parameters

- » Approach terrain category
- » Shielding
- » Topography
- » Height of building
- » Orientation of building

Claims Analysis (CTS + Suncorp) Cyclone Yasi (2011)

Mainland: Cat. 4 (BOM) 240 km/h peak gust

Data Overview

<u>Claims Data</u>

- » 14,282 claims (aggregate)
- » Loss, ins. value, lat/long, home age, damage description
- » Wind speeds: num. models, street signs, few anemom.
- » 179 assessors reports, random subset (photos, etc.)

Methodology

 » Loss ratio proxy for damage intensity (claim/ins. value)

Damage Intensity	Loss Ratio Range	
No Damage	0 (i.e. no claim)	
Minor	0-10%	
Moderate	10-50%	
Severe	50-100%	

Structural Failures (Older housing)

A/C AND SKYLIGHTS UNTERFALL AND WDOOK

AAAA

Auxiliary Items and Maintenance (Age independent)

RC Mile

Insured Loss – Townsville (55% Vdesign)

Proportion of Claims	Proportion of Cost	Loss Ratio	
94%	60%	0-10%	Small claim High frequency
5%	32%	10-50%	
<1%	6%	50-100%	Large claim Low frequency
<1%	2%	>=100%	
\$63,57	75,021	Net Loss	

→ Primarily damage from auxiliary items (i.e. minor debris, shade sails, water ingress, fences)

→ Severe damages still occur in both old (structural) and new (water ingress) housing

Key Findings and Recommendations

- » Roofing, window, water ingress → dominate loss
- » Pre-code housing at relatively > risk of structural damage
- » Modern housing still vulnerable
- » Minor damages independent of housing age (high frequency)

Recommendations for Mitigation (Existing housing)

- 1. Structural roof upgrading
- 2. Opening (i.e. windows, doors, etc.) protection upgrading
- 3. Community education/outreach

How do we get homeowners to invest in mitigation?

How do we get homeowners to invest in mitigation?

14

Understanding Behavior Change

Understanding Behaviour Change

Customer survey

Natural Hazard Insurance Pricing

How does it work?

Natural hazard Insurance Pricing

Premium Breakdown

Australian Government Actuary: Report on Home and Contents Insurance Prices in North Queensland: page 5, 2014

Natural Hazard Insurance Pricing

Risk pricing vs risk pooling

- Evolution of insurance pricing has removed cross subsidies across customers
- Strong price signal has led to affordability issues for high risk areas
- Address the underlying risk and price reduces

Cyclone Resilience Benefit

Introduction

Cyclone Resilience Benefit

Introduction

Cyclone Resilience Benefit

Key points of vulnerability as basis for question structure

Size of the benefit depends on:

- Roof upgrades largest driver of benefit as largest structural vulnerability addressed
- Location of home largest potential benefits go to mitigation in the most cyclone prone areas
- Age of home work done to pre 1980s properties will see largest benefits

Cyclone Resilience Benefit

Findings

Cyclone Resilience Benefit

Findings

- » 14,400 customers have received the CRB since launch (end of June)
- » Average saving around \$100
- » Reductions ranging from \$20 to \$400+

Cyclone Resilience Benefit

Findings

www.jcu.edu.au/cts

Building Community Cyclone Resilience

Next steps

Thank you!

As the next stage of research, CTS, Suncorp, and Qld Gov't are working to develop tools (e.g. mobile app) to help the community better understand housing vulnerability in cyclones.

