Laurence McCoy

End-user
About
Laurence McCoy

Lead end user

This research tested two established reliable physics-based models—the Fire Dynamics Simulator and FIRESTAR3D—to simulate bushfire scenarios in three broad areas: sub-canopy wind flow, firebrand transport, and propagation of grass and forest fires. The team has made significant inroads into providing usable outputs as well as understanding various aspects of bushfire behaviour. This project was established to create a capability and capacity in Australia to conduct research and understand physical-based wildfire modelling approaches. There are several international groups developing these models, and it is imperative that Australia can interact and work alongside these researchers to translate the findings to the Australian context.
This study is identifying the thresholds beyond which dynamic fire behaviour becomes a dominant factor, the effects that these dynamic effects have on the overall power output of a fire, and the impacts that such dynamic effects have on fire severity. This will necessarily include consideration of other factors such as how fine fuel moisture varies across a landscape. The research team is investigating the conditions and processes under which bushfire behaviour undergoes major transitions, including fire convection and plume dynamics, evaluating the consequences of eruptive fire behaviour (spotting, convection driven wind damage, rapid fire spread) and determining the combination of conditions for such behaviours to occur (unstable atmosphere, fuel properties and weather conditions).
Research team:
The project aimed to improve understanding of fire and atmosphere interactions and feedback processes through running the coupled fire-atmosphere model ACCESS-Fire. ACCESS-Fire is an important research tool and has the potential to be a critical operational tool. It will assist in informing fire management decisions as increasingly hazardous scenarios are faced in a changing climate. Further deliverables from the project include the preparation of meteorological and simulation case studies of significant fire events as publications, installation and testing of the ACCESS-Fire coupled model on the National Computing Infrastructure; and preparation of training material to support operational implementation of research findings. The project has demonstrably achieved the objective of building and sharing national capability in fire research and has provided fire and meteorology expertise during high impact events in support of end-users inside their operational centres.
This project is part of the Black Summer research program funded by the Commonwealth Government through the 10-year extension of funding into natural hazard research in Australia.

Send a message to Laurence McCoy (via CRC)

User Contact