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Abstract Bathymetric data are a critical input to hydraulic models. However, river depth and shape
cannot be systematically observed remotely, and field data are both scarce and expensive to collect. In
flood modeling, river roughness and geometry compensate for each other, with different parameter sets
often being able to map model predictions equally well to the observed data, commonly known as
equifinality. This study presents a numerical experiment to investigate an effective yet parsimonious
representation of channel geometry that can be used for operational flood forecasting. The LISFLOOD-FP
hydraulic model was used to simulate a hypothetical flood event in the Clarence catchment (Australia). A
high-resolution model simulation based on accurate bathymetric field data was used to benchmark coarser
model simulations based on simplified river geometries. These simplified river geometries were derived
from a combination of globally available empirical formulations, remote sensing data, and a limited number
of measurements. Model predictive discrepancy between simulations with field data and simplified
geometries allowed an assessment of the geometry impact on inundation dynamics. In this study site, the
channel geometrical representation for a reliable inundation forecast could be achieved using remote
sensing-derived river width values combined with a few measurements of river depth sampled at strategic
locations. Furthermore, this study showed that spatially distributed remote sensing-derived inundation
levels at the very early stages of a flood event have the potential to support the effective diagnosis of errors
in model implementations.

Plain Language Summary Floods are among the most frequent and destructive natural disasters
worldwide. An accurate and reliable flood forecast can provide vital information for land management and
emergency response. Flood forecasts are achieved using numerical models that are able to predict the
depth, velocity, and arrival time of the flood wave at each point of the valley. The accuracy of these
predictions is strongly related to the quality of the three-dimensional representation of the valley. In
particular, information on river geometry (that is cross-section shape, depth, and width) is critical to the
application of these numerical models. However, it is impossible to measure river geometry along the entire
river length, especially in large basins. This study developed a method to represent river geometry using a
limited amount of time and money. Specifically, this objective can be achieved using available satellite
imagery complemented with a few measurements. Moreover, this study showed that flood forecast skill can
be improved by combining information from satellite and numerical models. Albeit simple, the river geome-
try representation proposed in this study can support the accurate prediction of floodplain inundation. This
method was described and tested using, as example, a hypothetical flood event in an Australian catchment.

1. Introduction

Fluvial flooding is one of the most frequent and destructive natural disasters worldwide (CRED & UNISDR,
2015; De Groeve et al., 2015). An accurate and reliable flood forecast provides vital information for land
management and emergency response. Consequently, operational flood forecasting systems should model
runoff generation, runoff concentration, streamflow propagation, and floodplain inundation (Sene, 2008).
Hydrological models, a component of the flood forecasting system, predict runoff generation and concen-
tration from rainfall forecasts. A number of operational hydrological models have been developed over the
last few decades (Pagano et al., 2014), and it has been shown that forecast accuracy of these models can be
improved using remotely sensed soil moisture data (Li et al., 2016). Hydraulic models then take the
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hydrologic model outflow hydrograph to compute water level and velocity in the river network, and when
the storage capacity of the river is exceeded, in the floodplain. Remote sensing (RS) observations from radar
altimeter, active synthetic radar, and optical instruments have been increasingly used to support hydraulic
model implementation, calibration, and validation. Moreover, assimilation of RS data into hydraulic models
has the potential to improve flood forecast skill in near real time (Grimaldi et al., 2016). The increased avail-
ability of RS data has allowed a number of applications at the continental to global scales (e.g., Sampson
et al., 2015; Schumann et al., 2013; Yamazaki et al., 2013). However, only few operational systems currently
incorporate the forecasting of floodplain inundation at the local scale (Dewelde et al., 2014).

Flood warnings at the local scale should be detailed and specific to the site and local conditions. For this
reason, the implementation of hydraulic models demands for high-resolution and high accuracy data sets
(Alfieri et al., 2016; Perez et al., 2016). In particular, river bathymetric data are essential for the accurate
modeling of river hydraulics, which is pivotal for the prediction of floodplain inundation (Neal et al., 2015;
Trigg et al., 2009). Three-dimensional surfaces of river corridors can be reconstructed using point cloud data
collected by multibeam sonars mounted to boats (e.g., Conner & Tonina, 2014) or cross sections surveyed
with single beam sonars mounted to small watercraft (e.g., Pasternack & Senter, 2011). However, bathymet-
ric data are not available for many rivers in the world (Garc�ıa-Pintado et al., 2015; Wood et al., 2016). Further-
more, even at the catchment scale, it is not economically and practically feasible to measure along the total
length of a number of streams, especially considering that changing inputs of water, sediment, and vegeta-
tion often lead to alterations of river morphology over short time scales. In particular, moderate annual
peak floods lead to altered cross-sectional geometry while rare infrequent events cause significant channel
change (Buffington, 2012; Soar et al., 2017).

Remote sensing techniques can be used to asses river width, but river depth and channel shape cannot be
systematically observed remotely (e.g., Alsdorf et al., 2007b; Sampson et al., 2015). In fact, river depth assess-
ment from reflectance data measured by satellite or airborne optical instruments, or airborne bathymetric
LiDAR, is limited to nearly clear shallow water (e.g., Kinzel et al., 2013; Legleiter, 2015; Legleiter et al., 2009;
Pan et al., 2015). In the context of data scarcity, many studies have coupled data assimilation, inversion or
calibration algorithms with hydraulic models to estimate river bathymetry from observations of water level
or flood extent. In these algorithms, a first approximation of depth values is often derived from empirical
equations relating river geometry to the catchment area (Leopold & Maddock, 1953). Observations of water
levels can be provided by satellite altimeters. However, the coarse spatial (�km) and temporal (�months)
sampling resolution of currently available products (e.g., ERS-2, ENVISAT, Jason-1–2-3, Sentinel 3A) may
impede their application to riverine flood modeling in many catchments worldwide (Schumann et al.,
2015). While higher temporal resolution water level time series for medium to large rivers can be potentially
achieved by combining several years of observations from multiple sensors (Tourian et al., 2016), many
researchers (e.g., Durand et al., 2008, 2014; Frasson et al., 2017; Garambois & Monnier, 2015; Mersel et al.,
2013; Yoon et al., 2012) are looking at the potential of the upcoming Surface Water & Ocean Topography
(SWOT) wide swath altimetry satellite mission to tackle the problem at coarse spatial resolution. The SWOT
mission will provide spatial water level fields for all rivers wider than 100 m, with 10 cm water level accuracy
over 1 km2. This means, for instance, a 10 km reach for a river of 100 m width (Biancamaria et al., 2016;
Rodriguez, 2015). However, questions on the feasibility of using 10 km averaged SWOT water level observa-
tions for many local-scale investigations (e.g., Biancamaria et al., 2010; Garambois & Monnier, 2015) can only
be answered after the mission launch, currently expected in 2021 (https://swot.jpl.nasa.gov/).

Alternatively, water extent, levels, and slope can be retrieved from existing Synthetic Aperture Radar (SAR)
and optical remote sensing. For instance, high-resolution optical data and high and coarse resolution SAR
images were used by Durand et al. (2014), Garc�ıa-Pintado et al. (2015), and Wood et al. (2016) in data assimi-
lation and calibration algorithms to simultaneously estimate channel geometry and roughness of the rivers
Severn (UK) and Ohio (USA). However, it was shown that channel geometry and roughness compensate for
each other with different parameter sets mapping model predictions to the observed data equally well,
generating an equifinality problem. While this equifinality problem could have a limited impact on the
modeling of large shallow rivers such as the Amazon River (Durand et al., 2008), it is highly relevant at small
to medium scales, even when assimilating precise water elevation and slope data collected by a drifting
GPS buoy into a hydraulic model (Hostache et al., 2015). In these cases, it was shown that use of (i) at least
one field water depth measurement, (ii) a reduced range for roughness, or if available (iii) a good range of
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flood magnitudes, could reduce the uncertainty in the identification of effective depth-roughness pairs
within a rectangular channel implementation (Durand et al., 2014; Garambois & Monnier, 2015; Garc�ıa-
Pintado et al., 2015; Wood et al., 2016). In fact, Neal et al. (2015) pointed out that geometry and friction had
different impacts on flood dynamics when using a rectangular geometry where depth-roughness pairs
were defined to match observed data at the local level, leading to spurious inundation predictions in the
downstream area. Consequently, it was suggested that a more realistic representation of channel shape has
the potential to lead to more robust solutions for model calibration.

The need for the inclusion of channel morphology in the model structure combined with the persistent
problem of data scarcity demands cost-effective solutions for the assessment of river bathymetry. This study
investigated the problem of implementing operational flood forecasting hydraulic models with limited field
data. In many inhabited catchments sparse field data might be readily available, and local stakeholders
could be willing to invest limited resources in field data collection but are not able to provide detailed
bathymetric data. Consequently, this paper aims at providing advice on data collection and a method for
the preliminary assessment of river bathymetry which is flexible (that is, applicable to any river width), parsi-
monious and repeatable over time. The resulting model implementation has to be effective. That is, it has
to support appropriate inundation process representation. The impact of a different representation of river
morphology on model predictions is likely to be a function of model structure, and the effective description
of river geometry should be identified within the selected numerical framework. For instance, more com-
plex geometrical representations might be required to compensate for the approximations of simplified
numerical models (e.g., Fewtrell et al., 2011; Trigg et al., 2009).

Spatially distributed hydraulic flood forecasting models can be broadly distinguished as either full solutions
of the shallow water equations (hydrodynamic or dynamic models) or simplified approximations in which
the convective acceleration term in the momentum conservation equation is neglected (inertial approxima-
tion); both the convective acceleration term and the local acceleration term are neglected (diffusive approx-
imation); or the pressure gradient and both the acceleration terms are neglected (kinematic approximation;
Bates et al., 2010; Hunter et al., 2007). Only few studies have addressed the issue of representing channel
complexity and type of numerical channel solver. Orlandini and Rosso (1998) showed that incorporating
estimated channel geometry into a diffusion wave routing scheme based on the Muskingum-Cunge
method produced a significant improvement in the description of the flood hydrograph at the outlet of the
Sieve catchment (Italy) with respect to a less detailed network parameterization based on rectangular cross
sections. Trigg et al. (2009) compared a one-dimensional (1-D) diffusive model (1-D-2-D LISFLOOD-FP, Bates
& De Roo, 2000) based on simplified rectangular cross sections, with a hydrodynamic 1-D model (HEC-RAS,
USACE) based on a fully irregular channel. They showed that channel water levels in large, shallow sloped
rivers, such as the Amazon River, could be adequately reproduced using a prismatic rectangular channel
having equivalent flow area as the real channel. However, floodplain water levels cannot be assumed to be
the same as channel water levels and a detailed two-dimensional (2-D) modeling of the complex nonlinear
interactions between the channel and floodplain is essential (Alsdorf et al., 2007a; Trigg et al., 2009). Fewtrell
et al. (2011) compared the skill of complex, fully irregular geometries and simplified rectangular geometries
embedded in a coupled 1-D-2-D hydrodynamic model (ESTRY-TUFLOW; Syme, 1991) for the prediction of
gauged water levels and spatially distributed wrack marks in the Eden-Petteril-Caldew river system (United
Kingdom). They concluded that accurate estimates of the river conveyance capacity and cross-section
depth values were required for the predictions of far-field flood elevations within a fully hydrodynamic
model framework. However, the same authors suggested that a more complex physical representation of
the channel geometry could be necessary when model physical complexity is decreased.

The objective of this paper is the investigation of a parsimonious method for assessing river geometry
requirements for effective implementation in operational flood forecasting systems. A 2-D modeling frame-
work was deemed appropriate for this purpose. Even though 1-D codes are computationally very efficient,
they cannot adequately simulate lateral floodplain wave routing (e.g., Alsdorf et al., 2007a; Hunter et al.,
2007; Trigg et al., 2009). A numerical experiment was conducted by using the 2-D inertial model LISFLOOD-
FP (Bates et al., 2010) to simulate a hypothetical flood event in a 20 km long meandering reach of the Clar-
ence River (Australia). Despite LISFLOOD-FP having been widely used in riverine flood modeling studies,
there has not been a thorough analysis of the impact that the channel geometry has on floodplain inunda-
tion patterns (Savage et al., 2016b). A high-resolution model based on accurate bathymetric field data was
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used to benchmark coarser model simulations based on simplified representations of river geometry. Syn-
thetic water level time series and RS-derived inundation extent and level were derived from the benchmark
model and used for model verification and evaluation. The simplified river geometries were first derived
from an analysis of the complete bathymetric field data set in order to investigate the level of river geomet-
rical complexity required for the prediction of inundation dynamics within the selected numerical frame-
work and study area. A number of geometrical representations were then hypothesized based on a
combination of globally available empirical formulations, remote sensing data, and a limited number of
measurements (that is, a small subset of the bathymetric field database). The a priori knowledge of the dis-
crepancy between field data and simplified models allowed the impact of river geometry error on inunda-
tion modeling to be discussed. This numerical experiment illustrated the potential value of RS-derived
inundation level for the diagnosis of errors in river geometry representation.

2. Test Site

The test site is the Clarence catchment (Australia, Figures 1a and 1b). The Clarence River is 394 km long and
has a drainage area of 22,700 km2. This catchment was affected by major floods in 2009, 2011, and 2013.
The numerical model was setup to simulate a 21.3 km long river reach between Copmanhurst and Moun-
tain View (Figure 1d), for which bathymetric data were available. This river reach is laterally stable,

Figure 1. (a) Location of the Clarence catchment. (b) Clarence catchment, main towns. (c) Measured input discharge hydrograph at GS.204007. (d) Modeled area
represented by the red square. Red points: synthetic water level gauges G1, G2, G3, and G4 (section 5.4). Yellow points: selected cross sections in scenario
S2 (section 5.1). Green points: cross sections of the Old database (section 3).
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unconfined, and meandering with sinuosity of 2 (Erskine et al., 2006). Lateral floodplains are steep and the
valley is nearly V shaped. Flood events are quick in the area. For instance, in 2011 the flood peak travelled
the 125 km from Lilydale to Yamba in less than 30 h with widespread flooding affecting all the urban areas
along the Clarence River.

3. Field Data

River bathymetry can be effectively interpolated from cross sections surveyed with traditional survey equip-
ment for wadeable streams (e.g., Waddle, 2010) or with sonar equipment mounted on small boats for non-
wadeable reaches (e.g., Altenau et al., 2017). The accuracy of interpolated bathymetries depends on
measurement error, the density and distribution of cross-section data, and the interpolation method (Glenn
et al., 2016). Albeit inevitable, measurement errors can be accurately estimated. For this study, cross-section
location and data analysis methods were defined following the guidelines presented by many authors (e.g.,
Castellarin et al., 2009; Conner & Tonina, 2014; Cunge et al., 1980; Samuels, 1990). Primary cross sections
were placed at the beginning and end of the main geomorphologic features (restrictions, widenings,
islands, bends, inflection points, and apexes of meanders were identified by a visual analysis of Google
Earth) with an average spacing less than 2 km (Cunge et al., 1980). Secondary cross sections were drawn by
applying a minimum spacing of 200 m (Conner & Tonina, 2014).

The field survey was completed in November 2015 using a SonTek M9 HydroSurveyor Acoustic Doppler Pro-
filer mounted on a kayak. The M9 has built-in compensation for pitch and roll, and an integrated Differential
Global Positioning System (DGPS) positioning solution with a horizontal accuracy of 1 m or less. Whenever
possible, diagonal survey routes were used beside perpendicular cross sections in order to collect as much
detail of the three-dimensional channel morphologic variability as possible (Figure 2a).Vertical profiles of
salinity, temperature, and pressure were sampled using the Sontek CastAway and interpolated in space and
time using HydroSurveyor software in order to achieve a full sound speed compensation of depth data and
thus a 0.02 m depth accuracy (Figures 2a and 2b). The final database consisted of 59 cross sections having a
mean distance of 350 m and a total of over 46,000 additional soundings. This database will be hereafter
referred to as the Hi-RA (high-resolution and accuracy) database.

Sonar depths were converted to bed elevations and tied to the Australian Height Datum (AHD) using a pla-
nar water surface level fitted to water elevation records registered at Lilydale (Australian Bureau of Meteo-
rology), Rogan Bridge, and Grafton (New South Wales Manly Hydraulics Laboratory). Each cross section was
connected to the floodplain with the aid of a 1 m Lidar Digital Elevation Model (DEM) having a vertical accu-
racy of 630 cm and horizontal accuracy of 680 cm (New South Wales Land and Property Management
Authority, 2010; Figure 2c). Following the recommendations by Glenn et al. (2016), a custom interpolation
method based on a local along-thalweg curvilinear coordinate system was implemented to transform the
irregularly spaced cross sections into a surface. This preliminary reconstruction of the riverbed surface was
then modified to include the additional soundings using a second order inverse distance algorithm. The
nearest neighbor method was finally used to sample this submeter irregular mesh topography to a regular
1 m grid which was integrated with the Lidar data into one seamless data structure (hereafter called 1mLI-
DAR-BATH).

A bathymetric survey of the Clarence River from Mountain View to Brushgrove (�41 km, green dots in Fig-
ure 1d) was completed in the 1960s. This database, which will hereafter be referred to as the Old database,
includes 59 cross sections measured with an average spacing of 727 m. It was provided to the authors by
BMT-WBM (Huxley & Farr, 2013). Information on the observation method and accuracy was not available (B.
Rodgers, BMT WBM Pty Ltd, personal communication, 2016).

4. Data Analysis

4.1. Analysis of the Geometry of the Cross Sections at Bankfull Level
Flow levels change over time and channel limits cannot be defined by the wetted area at the time of mea-
surement. Conversely, bankfull level, or the point at which the flow begins to enter the active floodplain
(Leopold & Maddock, 1953), is a consistent benchmark for comparison between sites (Vermont Agency of
Natural Resources, 2009). Bankfull flow area is consequently defined as the cross-sectional area of a channel
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Figure 2. Hi-RA database spatial domain. (a) Location and value of the depth measurements; location of the vertical pro-
files. Hydraulic model results: water levels at flood peak as predicted by the benchmark high-resolution model (section
5.3). (b) Example of measured vertical profiles of water temperature, salinity, and pressure. (c) Example of a measured
cross section. dbf ;max, maximum bankfull depth; dbf , bankfull depth; Abf , bankfull flow area; wbf , bankfull depth
(section 4.1).
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just before floodplain flooding occurs. In this study, bankfull level was identified using a combination of
indicators including geometrical break from steep slope to gentle slope; erosional features; and change in
vegetation (e.g., Dingman, 2009; Rosgen, 1996). Estimated bankfull levels were 5.5 m AHD at Copmanhurst
and 2.8 m AHD at Mountain View with a longitudinal slope of 0.13&. Table 1a shows the geometrical fea-
tures of the Hi-RA database. Bankfull width (wbf Þ ranges between 132 and 365 m (with a mean value of
224 m). Maximum bankfull depth (dbf ;max) was identified by the lowest point of the cross section, that is the
thalweg (e.g., De Rose et al., 2008). Its value varies between 5 and 24 m (with a mean value of 11.6 m) and it
is on average 63% higher than the mean channel depth or bankfull depth (dbf , computed as the ratio
between bankfull flow area Abf and bankfull width) thus revealing that most of the cross sections are far
from rectangular. For each cross section, Figure 3a shows the distance of the left and right bank from the
thalweg. The distances were normalised to the bankfull width. Since a symmetrical cross section would be
described by 20.5 and 10.5 values, Figure 3a shows the distinctive nonsymmetrical shape of most of the
measured cross sections. Analytical models for the description of nonsymmetrical cross-section shapes are
not known to the authors. For this reason, a general symmetrical cross-section shape model has been used
(e.g., Dingman, 2009; Neal et al., 2015). In this model, the channel shape can be described using a simple
dimensionless shape coefficient s computed by fitting the exponential relationship between channel flow
width w and depth d values normalised to the bankfull values according to

w
wbf

5
d

dbf

� �1
s

: (1)

As shown in Table 1a and Figure 3b, cross-section shapes along the river reach could alternatively be con-
cave (s< 1), triangular (s 5 1), parabolic (s 5 2), or almost rectangular (s� 5).

Five cross sections were common to the Hi-RA and Old database. Each pair of cross sections was compared
by computing the ratio of the bankfull parameters (wbf ; dbf ; dbf ;max; Abf ; s); values close to 1 (Table 1c)
suggested a limited morphological variability of the river reach over the last fifty years. Similarly to Table 1a,
Table 1b shows that the cross sections of the Old database are characterised by a large variety of shapes,
mostly not rectangular. Moreover, when compared to the Hi-RA database, the cross sections of the Old data-
base have a similar range of depth values but higher values of width leading to larger values of flow area.

Table 1a
Bankfull Parameters of the Hi-RA Database (59 Cross Sections)

Hi-RA database wbf (m) dbf ;max (m) dbf (m) Abf (m2) s

Median 213.3 11.7 6.7 1,498.1 1.7
Mean 224.6 11.6 7.1 1,598.7 2.1
Standard deviation 52.6 4.0 2.1 406.9 1.3
Minimum 132.1 5.5 3.8 1,014.5 0.6
Maximum 365.6 24.1 13.7 2,794.3 6.5

Table 1b
Bankfull Parameters of the Old Database (59 Cross Sections)

Old database wbf (m) dbf ;max (m) dbf (m) Abf (m2) s

Median 553.0 9.6 5.7 2,987.3 1.5
Mean 509.6 10.7 6.4 2,938.5 1.7
Standard deviation 141.1 4.2 2.0 376.0 0.9
Minimum 204.0 5.5 3.7 1,989.2 0.5
Maximum 792.0 27.1 13.3 3,728.5 5.6

Table 1c
Comparison Between the Bankfull Parameters of the Five Cross Sections Common to the Hi-RA and Old Database

Hi 2 RA database
Old database

wbf ;Hi2Ra

wbf ;Old

dbf ;max;Hi2Ra

dbf ;max;Old

dbf ;Hi2Ra

dbf ;Old

Abf ;Hi2Ra

Abf ;Old

sHi2Ra

sOld

Mean 1.20 0.96 0.97 1.30 1.2
Standard deviation 0.05 0.01 0.01 0.05 0.02

Note. wbf , bankfull width; dbf ;max, maximum bankfull depth; dbf , bankfull depth; Abf , bankfull flow area; s, shape
coefficient.
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4.2. Remote Sensing and Empirical Databases of Bankfull Parameters
Modeling of the river network requires channel centerlines, flow direction data, a river mask, a set of depth
values, and information on river shape. Channel centerlines and flow directions can be derived from the mor-
phological analysis of DEMs. Near-global and continental scale databases, such as the 3 arc sec (�90 m at the
Equator) resolution flow direction data layer and the 15 arc sec (�500 m at the Equator) river network data
layer included in the HydroSHEDS (Lehner et al., 2008; Lehner & Grill, 2013) and the 9 arc sec (�270 m at the
Equator) resolution Australian Hydrological Geospatial Fabric (Australian Bureau of Meteorology, 2015, http://
www.bom.gov.au/water/geofabric/index.shtml), are readily available. River masks are generally retrieved from
optical remote sensing images. For instance, Altenau et al. (2017) used 5 m resolution RapidEye images;
O’Loughlin et al. (2013) and Yamazaki et al. (2015) used a set of 30 m resolution Landsat images. In Australia,
the web service Water Observation from Space (WOfS, Geoscience Australia, http://www.ga.gov.au/scientific-
topics/hazards/flood/wofs) provides a statistical analysis of surface water observations derived from Landsat
imagery (Mueller et al., 2016). In particular, permanent water bodies are identified by pixels having observed
water recurrence equal or higher than 80% (Mueller et al., 2016). River masks can be integrated with channel
centerlines and flow direction data to estimate river width. Semiautomatic (e.g., O’Loughlin et al., 2013; Pavel-
sky & Smith, 2008; Trigg et al., 2012) or fully automatic (e.g., Sampson et al., 2015; Yamazaki et al., 2014) algo-
rithms have been developed for this purpose and their application allowed the delivery of regional to global
databases, such as the 1 arc sec (�30 m) resolution North America River Width data set (Allen & Pavelsky,
2015) and the 3 arc sec (�90 m) resolution Global Width Database for Large Rivers (Yamazaki et al., 2014).

As an alternative to the use of remote sensing data, bankfull width values can be derived from a set of empiri-
cal geomorphic relationships known as the at-a-station hydraulic geometry relations, introduced by Leopold
and Maddock (1953), and widely used in literature (e.g., Camporese et al., 2010). In these equations bankfull
width (wbf ) and depth (dbf ) are expressed as a power function of bankfull discharge (Qbf ) which can be
assessed by local flood analysis or as a power function of the catchment drainage area (Ac) according to

wbf 5aQbf
b; (2a)

dbf 5cQbf
f ; (2b)

Qbf 5kAc
h: (2c)

Figure 3. Hi-RA database: (a) distance of each bank from the thalweg, the values are normalized to the bankfull width; (b)
shape coefficient s.
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The empirical coefficients a; c; k and exponents b; f ; h of these equations are related to local climatic and
geological conditions (Phillips, 1990), with possible similarities at the reach scale (Gleason & Wang, 2015).
For instance, Gordon (1996), Stewardson (2005), Dingman (2007), Harman et al. (2008), and De Rose et al.
(2008) proposed assessment methods for bankfull discharge and river geometry for many rivers in South-
East Australia. These correlations were applied here for the prediction of bankfull geometry of the Clarence
River. Empirical analyses are not available for each catchment worldwide and Andreadis et al. (2013) pub-
lished a 15 arc sec (�450 m) resolution near-global river bankfull width and depth database. Bankfull values
were derived from the application of a unique parameter set (Moody & Troutman, 2002) to a global power
correlation between bankfull discharge and drainage area. The mean and the 5–95% confidence intervals
were computed to account for the variability of rivers worldwide. This database (usually the mean values)
has been widely used in river modeling (e.g., Sampson et al., 2015; Schumann et al., 2013). Table 2 shows
the RS-derived database and the at-a-station formulations used in this study to provide a number of esti-
mates of bankfull width and depth.

5. Methods

5.1. Numerical Model, Boundary Conditions, Parameters, Grid Size
The inertial formulation of the 2-D hydraulic model LISFLOOD-FP (Bates et al., 2010) was chosen for this
study. This model has proved to be accurate against analytical solutions and hydrodynamic models (N�eelz
& Pender, 2013), while also being more computationally efficient than diffusive models (de Almeida et al.,
2012). The numerical scheme is based on a finite difference method which is explicit in time and first order
in space. Water flows Q are estimated separately through each face of a regular computational grid. For
each direction (X and Y), the explicit form for the calculation of Q at the new time step t1Dtð ) is given by

Qt1Dt5
qt2gdtDt D dt 1zð Þ

Dx

11gDtn2jqtj= dtð Þ7=3
� � � Dx; (3)

where Q is the flow (m3 s21), q is the flow per unit width (m2 s21), g is the gravitational acceleration (9.81
m s21), d is the depth of flow (m), z is the river bed elevation (m), n is Manning’s roughness coefficient
(m21/3 s), and Dx is the cell resolution (m). The continuity equation is then applied to the full grid domain
to update water depths inside each computational cell, thus achieving a 2-D solution. Numerical instabilities
may arise at low Manning’s n values (Bates et al., 2010) and this problem was solved by introducing the dif-
fusive term proposed by de Almeida et al. (2012). However, these conditions do not arise in our model
setups.

Implementation of the model requires a DEM, a description of river geometry, input and boundary condi-
tions, and spatially distributed roughness coefficient values. Lateral tributaries and bridges were not

Table 2
RS-Derived Database and the At-A-Station Formulations for Assessment of the Bankfull Parameters

Catchment area Near global: e.g., HydroSHEDS
(Lehner et al., 2008)
Australia: GEOFABRIC

#
Discharge at bankfull Empirical formulations

Near global: e.g., Andreadis et al. (2013)
Australia: e.g., Gordon (1996)

#
Depth and width Empirical formulations RS-derived width database

Near global: e.g., Moody and Troutman (2002)
Australia: e.g., Stewardson (2005)
and De Rose et al. (2008)

 Near global: Global Width
Database for Large Rivers

(Yamazaki et al., 2014)
Australia: Water Observations

from Space (Mueller et al., 2016)

Water Resources Research 10.1002/2017WR021765

GRIMALDI ET AL. 9



included in the model setup. The DEM used was the 1mLIDAR-BATH and river geometry was discretized
using a number of grid cells. Gauged data were not available at the upstream (Copmanhurst) and down-
stream (Mountain View) boundaries of the computational domain. Consequently, the discharge hydrograph
measured at the closest upstream gauge station (GS.204007, Australian Bureau of Meteorology, Figure 1d)
during the January 2011 flood (Figure 1c) was used as upstream boundary condition, and water levels mea-
sured during a low flow period at the closest gauge station to Mountain View (GS.204414, New South Wales
Manly Hydraulics Laboratory, Figure 1d) were used as downstream boundary condition. This latter choice
accounted for the relevant impact of tidal levels on riverine flow in this catchment; moreover, the induced
backwater effects could enhance floodplain inundation and thus help identifying the discrepancies
between model outputs for extreme flood events. A few model simulations were made with free slope
boundary conditions to discard the hypothesis of a large impact of downstream boundary conditions on
predicted flood extent and levels, and consequently on the overall conclusions of this modeling exercise.

In hydraulic modeling of floods, spatially distributed roughness coefficients are often disaggregated into
two values only, one for the channel and the other for the floodplain (e.g., Werner et al., 2005) and consid-
ered as effective parameters used to compensate for lack of process and topographic representation (e.g.,
Horritt & Bates, 2001; Jung et al., 2012). In this study, channel Manning’s roughness values were varied from
0.005 to 0.07 m21/3 s with steps of 0.005. The floodplain Manning’s roughness value was set to 0.035 m21/

3 s to represent the impact of high grass, crops, scattered brush, and scattered trees on surface flow (Chow,
1959) and kept constant for all the models; this choice allowed for a focus on the impact of channel rough-
ness and geometry on model results.

Recent advances in code parallelization methods (e.g., Neal et al., 2010) and Graphical Processing Units
(GPUs; e.g., Kalyanapu et al., 2011) have decreased computational time. However, multiple model runs at
fine-scale might still be too computationally expensive, especially for operational purposes (Savage et al.,
2016b). Consequently, topographic data are commonly resampled to a coarser grid than its original form,
with the critical choice of spatial resolution usually the outcome of a site-specific compromise between
computational time and model accuracy. Examples of results reported in literature are 50 m for the Imera
catchment, Italy (Savage et al., 2016a), 120 m for the Thompson River, Australia (Jarihani et al., 2015), and
250 m for the Atchafalaya Basin, USA (Jung & Jasinski, 2015). In this study, the 1mLIDAR-BATH was
resampled using the Geo Editor for Modeling (Hilton, 2017) to create four DEMs having 5, 10, 30, and 90 m
grid size, respectively.

5.2. Geometrical Representation of the River
5.2.1. Simplified Geometries Derived From the Field Data
A set of simplified geometries based on bankfull parameters of the Hi-RA database were hypothesized to
investigate which geometrical features allow enough physical representation of flow dynamics in a
meandering river within the selected numerical modeling frame. Four models (R1, R2, R3, and R4) had a
rectangular shape; two models (E1 and E2) had an exponential shape. Model R1 was based on measured
bankfull values of width and depth. This approach was used in previous studies (e.g., Fewtrell et al., 2011;
Garc�ıa-Pintado et al., 2015; Neal et al., 2015; Trigg et al., 2009) to speed up model implementation while
maintaining a certain level of river geometry variability. In model R1, channel longitudinal maximum bank-
full depth variability is neglected. Conversely, model R2 used the measured maximum bankfull depth values
while cross-section width was adjusted to maintain the measured cross-section flow area, as suggested by
Fewtrell et al. (2011). Information on real cross-section shape was lost in both models R1 and R2. However,
flow area was maintained at each cross section and the implementation of these models was limited to
data-rich catchments. Models R3, R4, E1, and E2 maintained the consistency of flow area at the reach scale
but could be applied to a larger number of catchments, where width data can be measured by remote sens-
ing instruments and a limited number of measurements of river depth were available. Model R3 had a con-
stant longitudinal slope derived from the linear interpolation of measured bankfull depth. Measured
bankfull width values represented the inter-cross-section geometrical variability. Model R4 used a prismatic
rectangular channel where bankfull width and depth values were derived from the linear interpolation of
the field data. A prismatic, rectangular channel is the common assumption in many continental and global
modeling exercises where only at-a-station empirical relationships are available (e.g., Schumann et al.,
2016). The same interpolated values were used in models E1 and E2. Similarly to Neal et al. (2015) and
Orlandini and Rosso (1998), the cross-section shape was conceived here as an additional calibration
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parameter to improve the models physical accuracy and robustness. Model E1 used the median value of
the modeled shape coefficients (s 5 2.1; Table 1a); model E2 was based on triangular cross sections (s 5 1).
Table 3 provides a summary of the model setups. Simplified cross sections were used to replace the real
ones and the river bathymetry was reconstructed using curvilinear interpolation.
5.2.2. Simplified Geometries in Data-Scarce Scenarios
Morphological variability along a river is the result of the combination of a plethora of climatic and geologi-
cal factors. As a consequence, the modeling of bankfull parameters variability is extremely difficult (e.g., De
Rose et al., 2008). At-a-station equations provide a parsimonious correlation with catchment area, yet a
choice among the large variety of coefficients and exponents has to be made. In this paper, a simple
approach to investigate the possibility of achieving an estimate of local river morphology was applied using
a limited number of field data. RS and empirically derived values of bankfull parameters were computed as
explained in section 4.2 (Table 2). These estimates were compared with the Hi-RA and Old databases using
the ratio of the root-mean-square error to the standard deviation of measured data (RSR) and the percent
bias (PBIAS).

Within the hypothesis of lack of field data from Copmanhurst to Mountain View (i.e., the domain of the
hydraulic model), the bankfull parameters for the implementation of the simplified geometries were derived
from an analysis of the Old database. Although sampling cross sections along the modeled river reach
would be clearly advisable, this hypothesis allowed the assessment of the worst case scenario where data in
the area of interest are not available. The results of the formulations listed in section 4.2 (Table 2) were com-
pared to a subset of width, depth, and flow area values extracted from the Old database. The formulation
that minimized the RSR value and the absolute value of PBIAS was used to reconstruct the geometry of the
‘‘unknown’’ river reach, from Copmanhurst to Mountain View. Three scenarios were hypothesized: S1 was
based on the full Old database; S2 used three cross sections selected at strategic locations; and S3 used the
three least representative cross sections. In S2, the three cross sections were selected a priori based on a
visual analysis of Google Earth images. These cross sections were distributed along the reach from Moun-
tain View to Brushgrove and showed different river width values (S2, cs1–2-3, Figure 1d). S3 was defined a
posteriori based on the analysis of the full Old database. Simplified cross sections were used to replace the
real ones and the river bathymetry was reconstructed using curvilinear interpolation.

5.3. Experimental Design
A high-resolution simulation based on the Hi-RA bathymetric database was considered as the benchmark
to verify if coarse resolution models relying on simplified river geometries are consistent abstractions of the
benchmark simulation. As stated in section 5.1, observed boundary conditions for the modeled domain
were not available. Consequently, the high-resolution benchmark model does not attempt to represent the
real system, but only a hypothetical system which is similar to the selected reach (e.g., Andreadis et al.,

Table 3
Simplified Geometrical Models Tested

Model
notation Shape Width Depth

R1 Rectangular s�5 Measured cross-section values of wbf Measured cross-section values of dbf

R2 Rectangular s�5 Ratio of measured cross-section values of
bankfull flow area and maximum depth:
at each cross section w5 Abf=dbf ;max

Measured cross-section values of dbf ;max

R3 Rectangular s�5 Measured cross-section values of wbf Linear interpolation of measured
cross-section values of dbf

R4 Rectangular s�5 Linear interpolation of measured
cross-section values of wbf

Linear interpolation of measured
cross-section values of dbf

E1 Exponential s 5 2.1 Linear interpolation of measured
cross-section values of wbf

Linear interpolation of measured
cross-section values of dbf

E2 Exponential s 51 Linear interpolation of measured
cross-section values of wbf

Linear interpolation of measured
cross-section values of dbf

Note. wbf , bankfull width; dbf ;max, maximum bankfull depth; dbf , bankfull depth; Abf , bankfull flow area; s, shape
coefficient.
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2007). Moreover, accuracy is not necessarily increased by higher precision (Dottori et al., 2013; Savage et al.,
2016b), and this study presents a sensitivity analysis undertaken by assessing coarse, simplified model pre-
dictions with respect to the data-rich benchmark solution (e.g., Fewtrell et al., 2008; Ozdemir et al., 2013; Yu
& Lane, 2006).

Specifically, a model realization having 5 m grid size based on the Hi-RA bathymetric database, and with river
Manning’s roughness value of 0.03 m21/3 s was considered as the benchmark. The selected river roughness
value has been recommended for clean, full stage main channels, without rifts or deep pools (Chow, 1959).
The benchmark model was used to generate synthetic time series of water level and synthetic maps of flood
extent and level. Model verification was undertaken by assessing coarse model predictions of water level and
extent with respect to the benchmark solution. Previous studies analyzed the sensitivity of LISFLOOD-FP out-
puts to the computational grid size (e.g., Horritt & Bates, 2001; Savage et al., 2016b). The testing of different
grid sizes here was merely functional to the choice of the appropriate coarse grid size for operational pur-
poses. Simplified geometrical representations of the river were therefore embedded in this coarse grid size.
Albeit inevitable, topographic, and bathymetric uncertainties exert a dominant control on flooding patterns
(Altenau et al., 2017) and, besides the decreased spatial resolution, even the method applied to produce the
coarser DEM could affect model predictions (Fewtrell et al., 2008). In these cases, a relative comparison
between the coarse yet data-rich model, and model implementations having the same grid size but based on
simplified river geometries, is likely to provide relevant information on the impact of uncertainties in the river
bathymetry representation on the predictive skill of the selected modeling frame. Information on errors in the
representation of the real river geometry was then correlated to the loss of inundation prediction accuracy to
investigate the impact of a poor knowledge of the river on flood inundation dynamics.

The analysis presented in this study required 182 model runs. The first model simulation was the high-
resolution, data-rich benchmark model. Three coarser model resolutions (10, 30, 90 m; section 5.1) were
then tested to identify the grid size for the analysis of the river geometry; each coarse model was imple-
mented with 14 river roughness values totaling 42 model runs. The effectiveness of a number of simplified
river geometries (section 5.2) in reproducing the benchmark model was then tested by inserting the simpli-
fied cross section into the selected coarse grid size. Bankfull parameters (i.e., width, depth, flow area, and
shape) of the simplified river geometries were first derived from the Hi-RA database to understand how the
model structure interacts with variations in river capacity, shape, and roughness. Six simplified geometries,
namely R1, R2, R3, R4, E1, and E2 (section 5.2.1), were derived from the Hi-RA database and tested with 14
river roughness values, totaling 84 model runs. Measured bankfull parameters were then compared to esti-
mates derived from RS data and at-a-station equations to suggest a data-parsimonious method for the pre-
liminary assessment of river geometry according to three data-scarce scenarios, namely S1, S2, and S3
(section 5.2.2). Finally, four models were derived by combining selected river geometries and data-scarce
scenarios. These 4 models were named R3-S1/S2, E-S1/S2, R3-S3, and E-S3; each of these models was tested
with 14 river roughness values, totaling 56 model runs.

5.4. Performance Metrics
Due to the intrinsic nonlinearity of flood wave propagation, implementation factors (i.e., in this study, river
geometry and roughness) affect different aspects of flood inundation processes in different ways and the
magnitude of these impacts can vary in time and space (e.g., Fewtrell et al., 2011; Neal et al., 2015; Savage
et al., 2016b). As such the choice of performance metrics can affect the outcomes of the model evaluation
exercise. To the authors’ best knowledge, a combined performance metric has not yet been proposed in lit-
erature. Conversely, the use of a number of performance measures was recommended to achieve a holistic
evaluation of model accuracy (e.g., Pappenberger et al., 2007).

In this study, simplified model verification was undertaken by assessing model predictions of water level at
the point scale and of inundation extent and level at the spatially distributed scale with respect to the
benchmark solution. Gauged data of water level and/or discharge have been traditionally used to evaluate
the skill of flood forecasting models at the point scale. However, it has recently been recognized that RS-
derived spatially distributed information of water extent and levels offer more appropriate and comprehen-
sive ways of comparison (e.g., Bates et al., 1997). An extensive research effort is being employed to investi-
gate the recommended acquisition time and to reduce the uncertainties in RS-derived flood extent and
level (e.g., Giustarini et al., 2016; Twele et al., 2016).These uncertainties might hinder the impact of RS data
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in model calibration and evaluation exercises (Grimaldi et al., 2016). In this study, a number of error-free,
synthetic RS observations were extracted from the high-resolution benchmark model before, at, and after
the flood peak. Removing the uncertainty stemming from real field and RS data allowed a strict comparison
of the outcomes of different model implementations.

Two performance metrics (specifically, root-mean-square error, RMSE, and flood peak ratio, PR) were used
to assess model predictive skill at the point scale along the main channel, and two performance metrics
(specifically, critical success index, CSI, and water level score, WLS) were used to assess model performance
at the catchment scale, i.e., to assess model capability of predicting floodplain inundation. This choice
allowed comparing the utility of point scale and spatially distributed performance metrics for model evalua-
tion. RMSE and PR were used to compare modeled time series of water levels at four locations along the
river (G1, G2, G3, and G4; Figure 1d) with the benchmark high-resolution simulation. The RMSE was selected
to quantify the absolute discrepancy between modeled and benchmark values while the PR allowed a rela-
tive evaluation and an immediate detection of overestimation and underestimation errors. Spatially distrib-
uted flood extent and water level were compared at four lead times selected to represent different stages
of the flood event (e.g., Savage et al., 2016a). Specifically, 24 and 12 h before the flood peak at the upstream
boundary (tPeak,Up), at tPeak,Up, 12 h after tPeak,Up (the benchmark inundation extent was negligible 36 h
before and 24 h after tPeak,Up). The use of RS-derived inundation level is subjected to the availability of a
high-resolution and accuracy DEM and the relative value of RS-derived flood extent and level to constrain
the parameter space of hydraulic flood forecasting models has been the topic of recent investigations (Ste-
phens & Bates, 2015; Stephens et al., 2014). Modeled flood extent maps were evaluated against those from
the high-resolution benchmark solution using the CSI (Aronica et al., 2002) such that

CSI5
A

A1B1C
; (4)

where A is the total area correctly predicted as flooded, B is the dry area incorrectly modeled as flooded,
and C is the flooded area incorrectly modeled as dry. A cell was considered as flooded when water depth
was equal to or greater than 0.10 m (e.g., Savage et al., 2016a). In order to account for the coarser spatial
resolution of the simplified geometrical models, the number of flooded cell were counted according to the
benchmark model within each coarse grid cell.

Synthetic RS-derived water level data were obtained by extrapolating the 5 m DEM elevation at each point of
the flood margin as predicted by the benchmark high-resolution model. Due to the coarser resolution of the
simplified geometrical models, a number of synthetic observations could fall into the same modeled grid cell.
Large variation of flood margin elevation could be observed in steep slope areas of the 1m Lidar DEM. Conse-
quently, as suggested by, e.g., Mason et al. (2012), synthetic water level observations could not fall in areas
having a slope equal to or larger than 0.25 (�148), with an enlarged exclusion area radius of 30 m. As an exam-
ple, Figure 2a shows the water levels at time tPeak,Up as predicted by the high-resolution benchmark model.
The application of a full protocol for the assessment of distributed values of water level was outside the scope
of this paper, and so all the remaining points were retained for model evaluation. In particular, the minimum,
midpoint, and maximum benchmark water levels were computed for each cell of any coarser model simula-
tion. The performance measure used here was first introduced by Savage et al. (2016a). A water level point
score (WLpoint, equation (5)) was computed for each water level observation extrapolated from the high-
resolution benchmark model. The model scored 0 if the predicted water level was at the midpoint of the inter-
val of the values predicted by the benchmark solution, 62 if the modeled water level was equal to two times
the difference between the uncertainty bound and midpoint of the benchmark water level such that

WLpoint5
Modeled water level2Benchmark water level; midpoint

0:5 Benchmark water level; maximum2 Benchmark water level; minimumð Þ : (5)

If a benchmark water level observation fell in a dry modeled cell, the modeled water level was retrieved
from the nearest modeled wet cell (Neal et al., 2009). The overall WLS for a model simulation was given by
the mean of the point scores such that

WLS5

Pn
i51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WLpoint2

i

p
n:obs

; (6)
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where n.obs is the number of observations. Finally, a simple graph reporting modeled water levels on the y
axis and water levels predicted by the benchmark model on the x axis was used to analyze the model
results at the spatially distributed scale. Good model predictions result in a set of points aligned along the
1:1 line.

6. Results and Discussion

6.1. Simplified Geometries Derived From the Field Data
Model accuracy and computational time decreased with increasing grid size (Table 4). For this study site, a
30 m grid size was a cost-effective modeling solution (0.34 m RMSE, 1.02 PR, 0.91 CSI, and 0.08 WLS). This
model application is referred to herein as 30-Bath. A set of simplified river geometries was embedded into
this coarse grid size (section 5.3). When evaluating medium to coarse model realizations in nearly V-shaped
valleys, the uncertainty bound of high-resolution benchmark water levels, given by the difference between
the maximum and the minimum benchmark water levels at fine resolution, might be as high as 2 m, and
small values of WLS are expected (equation (6) and section 5.4). For this reason and as explained in section
5.3, the use of the 30-Bath data-rich model as an additional benchmark for the evaluation of data-
parsimonious model implementations was considered of greater interest than the pursuit of higher model
performances for this model.

Implementation of models R1-2-3-4, and E1-2 had 30 m grid size and was based on the Hi-RA database.
Consequently, an overall agreement with the benchmark high-resolution model was expected. For each
model setup, Table 5 shows the highest values of the performance metrics (RMSE, PR, CSI, and WLS) that
were achieved when applying a simple tuning of the Manning’s river roughness coefficient (section 5.2).

The performances of model R1 and R2 at the point scale (R1: 0.35 m average RMSE, 0.99 average PR; R2:
0.73 m average RMSE, 0.97 average PR) and at the distributed scale (R1: 0.88 average CSI, 0.08 average WLS;
R2: 0.88 average CSI, 0.12 average WLS) showed that a set of rectangular cross sections having equivalent
flow area as the real channel can be used for the prediction of floodplain inundation when an inertial raster
based numerical model is applied to a meandering river. R1 achieved a performance very similar to the
model 30-Bath when using the same Manning’s roughness value as the high-resolution benchmark model.
In model R2, the enhanced geometrical roughness due to the high variability of maximum cross-section
depth values was compensated for by a smaller value of Manning’s surface roughness.

As explained in section 5.2.1, models R1 and R2 required detailed field measurements; conversely, models
R3, R4, E1, and E2 were suitable for data sparse areas. The implementation of models R3 and R4 required
RS-derived width data. Model R3 had the capability to reproduce the high-resolution benchmark model
similar to the data demanding models R1 and R2. Conversely, model R4 had the lowest skill. The implemen-
tation of models E1 and E2 did not require RS-derived width data; model E1 was based on a more realistic
representation of cross-section shape and led to more accurate representation of the benchmark model
than model E2 based on a triangular channel. A thorough analysis of each model outcomes is presented
hereafter. The results of model R3 (0.37 m average RMSE; 1.01 average PR; 0.90 average CSI; 0.09 average
WLS) showed that, in this study site, and differently from Fewtrell et al. (2011), bankfull width variability

Table 4
Model Performance Metrics and Computational Time for Increasing Grid Size

Grid
size (m)

Number of cells;
computational

time

RMSE
Average of G1,
G2, G3, G4 (m)

PR
Average of G1,

G2, G3, G4

CSI
Average of

tPeak,Up –24, –12, 10,
112 h

WLS
Average of

tPeak,Up –24, –12, 10,
112 h

10 1,400,000; 33 h 0.11 1.00 0.97 0.01
30 155,178; 27 min 0.34 1.02 0.91 0.08
90 17,316; 12 min 5.80 1.07 0.68 0.23

Note. All the models were run using a 3.40 GHz Intel(R) CoreTM i7–3770 CPU with 32 GB of RAM. RMSE, root-mean-
square error; PR, flood peak ratio; CSI, critical success index; WLS, water level score; G1, G2, G3, and G4, gauge locations
shown in Figure 1d; tPeak,Up, flood peak time at the upstream boundary of the computational domain.
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drives flow area variability and a uniform river bed slope could be used for flood forecast. Nevertheless, the
extremely limited sensitivity of model R4 to the tested range of river roughness values underlined the
importance of an adequate representation of river cross-section geometrical variability within this formula-
tion of LISFLOOD-FP, where river geometry is discretized using a number of grid cells. Table 5 shows that a
large interval of roughness values (specifically, from 0.015 to 0.07 m21/3 s) resulted in similarly poor R4
model performances (1.09–1.79 m average RMSE) and, differently from models R1, R2, R3, E1, and E2, a best
performing roughness value could not be identified. As can be inferred from equation (3), for high values of
flow depth d and discharge q, even large variations of the roughness coefficient n might have a negligible
impact. For large flood events in channels wider than the computational grid size, implementations based
on a prismatic channel (model R4) hamper the use of the roughness coefficient as an effective calibration
parameter. Conversely, channel deepening or widening due to cross-sections depth and/or width variability
in models R1, R2, and R3 led to variability in river flow depth d that enhanced the model output sensitivity
to Manning’s roughness value. This analysis highlighted model R3 as a cost-effective solution when RS-
derived river width values are available, and river depth can be assessed at the reach scale.

Conversely, when RS-derived river width values are not available, the results of models E1 and E2 at the
point scale (E1: 0.25 m average RMSE, 1.01 average PR; E2: 0.78 m average RMSE, 1.06 average PR) and at
the distributed scale (E1: 0.88 average CSI, 0.09 average WLS; E2: 0.87 average CSI, 0.14 average WLS) dem-
onstrated that an exponential shape could represent an alternative implementation option. In contrast to
the results of model R4, an exponential shape could also be advised in river reaches having limited width
variability, to enhance model output sensitivity to Manning’s roughness value. Model E2 used a deep and
narrow channel and its performance at the local scale was very sensitive to variations in roughness values.
Moreover, its overall performance was lower than E1 showing that an accurate selection of the channel

Table 5
Performance Metrics of Models 30-Bath, R1, R2, R3, R4, E1, and E2 as Identified in Table 3

Gauge station RMSE PR Lead time CSI WLS

Model 30-Bath,
n 5 0.03 m21/3 s

G1 0.49 1.02 tPeak,Up 224 h 0.90 0.16
G2 0.41 1.02 tPeak,Up 212 h 0.91 0.06
G3 0.36 1.02 tPeak,Up 0.91 0.05
G4 0.10 1.00 tPeak,Up 112 h 0.89 0.06

Model R1,
n 5 0.03 m21/3 s

G1 0.49 0.99 tPeak,Up 224 h 0.88 0.08
G2 0.40 0.99 tPeak,Up 212 h 0.88 0.04
G3 0.27 0.98 tPeak,Up 0.89 0.06
G4 0.25 0.99 tPeak,Up 112 h 0.88 0.16

Model R2,
n 5 0.025 m21/3 s

G1 1.02 0.95 tPeak,Up 224 h 0.88 0.12
G2 0.94 0.94 tPeak,Up 212 h 0.88 0.08
G3 0.59 0.95 tPeak,Up 0.89 0.09
G4 0.39 1.06 tPeak,Up 112 h 0.86 0.21

Model R3,
n 5 0.03 m21/3 s

G1 0.36 1.01 tPeak,Up 224 h 0.90 0.09
G2 0.33 1.01 tPeak,Up 212 h 0.89 0.03
G3 0.21 1.02 tPeak,Up 0.91 0.09
G4 0.56 1.01 tPeak,Up 112 h 0.89 0.14

Model R4,
n 5 from 0.015 to 0.07 m21/3 s

G1 1.03–2.41 1.05–1.10 tPeak,Up 224 h 0.82–0.79 0.17–0.24
G2 1.16–1.97 1.07–1.10 tPeak,Up 212 h 0.91 0.12–0.17
G3 1.10–1.49 1.09–1.11 tPeak,Up 0.91 0.17–0.25
G4 1.05–1.29 1.12–1.16 tPeak,Up 112 h 0.89 0.21–0.30

Model E1,
n 5 0.03 m21/3 s

G1 0.17 1.01 tPeak,Up 224 h 0.88 0.09
G2 0.20 1.01 tPeak,Up 212 h 0.88 0.06
G3 0.32 1.01 tPeak,Up 0.89 0.10
G4 0.30 0.99 tPeak,Up 112 h 0.87 0.10

Model E2,
n 5 0.03 m21/3 s

G1 0.70 1.03 tPeak,Up 224 h 0.87 0.14
G2 0.73 1.03 tPeak,Up 212 h 0.87 0.11
G3 0.90 1.05 tPeak,Up 0.88 0.15
G4 0.81 1.10 tPeak,Up 112 h 0.86 0.16

Note. RMSE, root-mean-square error; PR, flood peak ratio; CSI, critical success index; WLS, water level score; n, Mann-
ing’s roughness coefficient; G1, G2, G3, and G4, gauge locations shown in Figure 1d; tPeak,Up, flood peak time at the
upstream boundary of the computational domain.
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shape coefficient is critical to flood modeling. Use of median value of shape coefficients derived from sam-
pled cross sections (model E1) was a viable solution in this data-rich scenario, but care has to be taken in
data-scarce scenario to avoid both near-rectangular (model R4) and near-triangular (model E2) cross sec-
tions. For this reason, the symbol E hereafter indicates an exponential cross section. Practical advice on the
choice of the shape coefficient is provided in section 7.

6.2. Comparison Between Measured and Readily Available Bankfull Parameters
Figure 4 shows a comparison between measured and estimated bankfull parameters. At-a-station equations
generally underestimated measured data. As shown in Table 6, global mean parameters by Andreadis et al.

Figure 4. Comparison between field data, the RS-derived database, and the at-a-station equations as identified in Table 2.
The grey striped area represents the interval of values predicted by the at-a-station equations.

Table 6
Comparison Between Field Data, RS-Derived Database, and At-A-Station Formulations

Database

RSR PBIAS

Hi-RA Old Hi-RA Old

(a) Bankfull width, wbf

Andreadis et al. (2013): mean value 3.03 3.22 267.07 285.33
Gordon (1996), Moody and Troutman

(2002), and Stewardson (2005)
0.99 0.99 1.38 21.06

WOfS, Mueller et al. (2016) 1.22 0.61 23.21 9.88
(b) Bankfull depth, dbf

Andreadis et al. (2013): mean value 5.96 2.55 277.12 273.87
Gordon (1996) and De Rose et al. (2008) 1.29 1.06 223.65 211.58

(c) Bankfull flow area, Abf

Andreadis et al. (2013): mean value 3.76 7.79 292.33 295.79
Gordon (1996), Moody and Troutman (2002),

Stewardson (2005), and De Rose et al. (2008)
1.47 2.41 28.94 227.27

WOfS, Mueller et al. (2016) and De Rose et al. (2008) 1.83 1.90 224.54 240.0

Note. RSR, ratio of the root-mean-square error to the standard deviation of measured data; PBIAS, percent bias.
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(2013) lead to a PBIAS of 267%, 277%, and 292% for the values of bankfull width, depth, and flow area of
the Hi-RA database, and to a PBIAS of 285%, 274%, and 296% for the for the values of bankfull width,
depth, and flow area of the Old database. For this study site, the empirical formulations derived by Gordon
(1996) and the formulation of Stewardson (2005) and De Rose et al. (2008) yielded a more accurate assess-
ment of bankfull parameters: PBIAS for width values were as low as 1% and 21% for the Hi-RA and the Old
database, respectively. However, underestimation of river depth persisted with PBIAS of 224% and 212%
thus leading to a PBIAS of 29% and 227% for flow area values. RS-derived width values from the WOfS
database (Mueller et al., 2016) provided the most accurate representation of field data values and
variability.

As shown above, selecting the most appropriate empirical formulation might be critical. A very simple
approach was used here to test the benefit of integrating these readily available estimates with a limited
number of field measurements. A parameterization of the at-a-station equations was selected based on
input data set S1, S2, and S3 and then used to provide a preliminary assessment of the geometrical charac-
teristics of the river reach from Copmanhurst to Mountain View. Table 7 shows the RSR and PBIAS values for
the ‘‘unknown’’ river reach. When RS-derived width values are available, the use of empirical formulations is
limited to the assessment of river depth. In this study site, as shown in Figure 4, at-a-station equations
underestimated measured bankfull depth and both the data-rich S1 data set and the strategic S2 data set
yielded the selection of the same parameterization of the at-a-station equations. For this reason, scenarios
S1 and S2 are hereafter grouped hereafter. Specifically, in S1 and in S2, the assessment of river depth and,
as a consequence, flow area was affected by a PBIAS of 224%. In scenario S3, a large underestimation of
the bankfull depth (PBIAS 5 277%) led to an equally large underestimation of flow area with a PBIAS as low
as 277%. Conversely, within the hypothesis of nonavailability of RS-derived width values, the empirical for-
mulations that minimize the errors in the assessment of the flow area must be used. Consequently to the
morphological variability highlighted in section 4.1, in situ equations yielded a large overestimation of the
river width with a PBIAS of 1118%, regardless of the input data set. The use of data sets S1 and S2 yielded
a large underestimation of bankfull depth with PBIAS of 242%. By chance, S3 provided more accurate esti-
mates with a PBIAS of 224%. Errors in width and depth assessment partially compensated each other and
the assessment of flow area was affected by a PBIAS of 168% for S1 and S2, and of 129% for S3. The shape
coefficient was the median of the values retrieved for the sampled cross sections in S1 and S2; a parabolic
cross section with s52 was used in S3.

In this study site, width variability drives flow area variability and at-a-station equations generally underesti-
mated real river depth. RS-derived width combined with a few cross sections measured at strategic loca-
tions provided a cost-effective preliminary assessment of river reach geometrical features. The use of ‘‘at-a-
station’’ equations selected based on a few field measurements has the potential to provide information on
the morphological variability of bankfull parameters at the larger scale. These equations link bankfull param-
eters of a river reach to the contributing catchment area. Consequently, they have the potential to provide
a more physically based assessment compared to simple extrapolation of field data.

6.3. Simplified Geometries in Data-Scarce Scenarios
The model implementation in data-scarce scenarios was based on geometries R3 and E (section 6.1). Bank-
full parameters were assessed based on data sets S1, S2, and S3 (section 6.2). Table 8 lists the values of the

Table 7
Preliminary Assessment of the Bankfull Parameters in Data-Scarce Scenarios S1, S2, and S3

Data set s

wbf dbf Abf

RSR PBIAS RSR PBIAS RSR PBIAS

R3 E R3 E R3 E R3 E R3 E R3 E

S1, S2 2.6 1.22 5.11 23.21 117.87 1.29 1.75 223.65 241.85 1.83 2.87 224.54 67.93
S3 2 1.22 5.11 23.21 117.87 2.82 1.29 276.56 223.65 3.19 1.47 276.86 28.94

Note. wbf , bankfull width; dbf , bankfull depth; Abf , bankfull flow area; s, shape coefficient; RSR, ratio of the root-mean-
square error to the standard deviation of measured data; PBIAS, percent bias; R3 and E, models as defined in Table 3.
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performance metrics for each model setup. Information on the errors in the representation of real river
geometry could be correlated to model results to assess the impact of these reach-scale approximations on
flood inundation predictions. In particular, as shown in Table 7, R3-S1/S2 and R3-S3 slightly (PBIAS 5 225%)
and largely (PBIAS 5 277%) underestimated bankfull flow area at the reach scale; E-S3 and E-S1/S2 moder-
ately (PBIAS 5 129%) and largely (PBIAS 5 168%) overestimated bankfull flow area at the reach scale.

Model R3-S1/S2 was able to reproduce the high-resolution benchmark model with similar performance
metric values as the model 30-Bath at the point scale (0.67 m average RMSE, 1.01 average PR) and at the
catchment scale (0.87 average CSI, 0.10 average WLS). Conversely, models R3-S3, E-S1/S2, and E-S3 had
lower performances; specifically, a unique model parameterization that allowed equally good performances
at any gauge station and any lead time could not be identified. For the purpose of this sensitivity analysis,
the Manning’s roughness value was selected to minimize errors in the prediction of inundation extent and
level 12 h before and at tPeak,Up. This choice was motivated by the results of previous data assimilation and
calibration studies which showed the effectiveness of RS images obtained during the rising limb and up to
the flood peak to constrain model parameter space (e.g., Garc�ıa-Pintado et al., 2013; Gobeyn et al., 2017).

As expected, a low value of Manning’s roughness coefficient was suggested for models R3-S3, while high
values of Manning’s roughness coefficients were suggested for models E-S1/S2 and E-S3. Nevertheless, large
variations in model performances at different gauge stations and different lead times (Table 8) suggested
that, for these models, a simple tuning of the friction parameter at the reach scale could not yield accurate
forecasts. Spatial or temporal variation of the roughness parameters to locally fit water levels or reduce pre-
diction errors at different lead times was not applied here. In fact, such a solution has been discouraged by
previous studies (Kirchner, 2006; Matgen et al., 2010; Neal et al., 2015).

In this numerical experiment, the artificially high number of gauge stations and synthetic RS observations
clearly highlighted errors in the implementation of models R3-S3, E-S1/S2, and E-S3. However, this problem
might be difficult to detect in a real case scenario, where a limited number of validation data are available.
Manning’s roughness coefficient is an effective parameter and deviations from physically realistic values are
expected (as in R3-S3). On the contrary, as pointed out by Stephens and Bates (2015), a false sense of over-
confidence in a models’ robustness can derive from physically realistic values of the friction coefficient (as
in E-S1/S2 and E-S3). Moreover, in the case of fast moving flood events in V-shaped valleys, fitness metrics
that evaluate model performance at the catchment scale (CSI and WLS) might be difficult to interpret, as
overprediction and underprediction errors can compensate for each other. Conversely, this study showed
that the comparison of modeled and benchmark water levels at the spatially distributed scale, for different

Table 8
Performance Metrics of Models R3-S1/S2, R3-S3, E-S1/S2, and E-S3 as Identified in Table 3

Gauge station RMSE PR Lead time CSI WLS

MODEL R3-S1/S2,
n 5 0.03 m21/3 s

G1 0.68 1.01 tPeak,Up 224 h 0.83 0.12
G2 0.54 1.00 tPeak,Up 212 h 0.88 0.04
G3 0.62 1.00 tPeak,Up 0.90 0.07
G4 0.86 1.03 tPeak,Up 112 h 0.88 0.16

MODEL R3-S3,
n 5 0.01 m21/3 s

G1 3.1 1.07 tPeak,Up 224 h 0.76 0.35
G2 2.9 1.07 tPeak,Up 212 h 0.84 0.16
G3 2.9 1.05 tPeak,Up 0.86 0.14
G4 1.6 0.87 tPeak,Up 112 h 0.85 0.29

MODEL E-S1/S2,
n 5 0.05 m21/3 s

G1 1.32 0.95 tPeak,Up 224 h 0.66 0.27
G2 0.78 0.98 tPeak,Up 212 h 0.74 0.14
G3 1.22 1.03 tPeak,Up 0.78 0.17
G4 2.39 1.25 tPeak,Up 112 h 0.73 0.17

MODEL E-S3,
n 5 0.055 m21/3 s

G1 1.31 0.97 tPeak,Up 224 h 0.67 0.16
G2 0.84 0.99 tPeak,Up 212 h 0.76 0.10
G3 0.62 1.02 tPeak,Up 0.80 0.15
G4 1.41 1.16 tPeak,Up 112 h 0.76 0.24

Note. RMSE, root-mean-square error; PR, flood peak ratio; CSI, critical success index; WLS, water level score; n, Mann-
ing’s roughness coefficient; G1, G2, G3, and G4, gauge locations shown in Figure 1d; tPeak,Up, flood peak time at the
upstream boundary of the computational domain.
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Figure 5. Comparison of models 30-Bath, R3-S1/S2, R3-S3, E-S/S2, and E-S3 as identified in Table 3: spatial distributions of
modeled and benchmark water levels at different times, including rising (left column) and falling (right column) limbs.
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Figure 6. Comparison of models 30-Bath, R3-S1/S2, R3-S3, E-S/S2, and E-S3 as identified in Table 3: modeled and bench-
mark water levels at (left column) tPeak,Up 224 h and (right column) tPeak,Up 212 h for different values of river roughness
coefficients (a 5 0.005 m21/3 s for R3-S3; a 5 0.01 m21/3 s elsewhere).
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lead times (Figures 5 and 6), allowed a more thorough understanding of the relative impacts of river geom-
etry and roughness on flood dynamics.

In model R3-S1/S2 (Figure 5), modeled and benchmark water levels aligned with the 1:1 line at any time
slice. This behaviour was consistent with the model 30-Bath (Figure 5). In fact, model R3-S1/S2 slightly
underestimated benchmark water levels. Nevertheless, the consistency of this discrepancy at the catchment
scale suggested that a finer tuning of the roughness coefficient had the potential to improve the perfor-
mance of model R3-S1/S2. In model R3-S3, the selected low value of river roughness partially compensated
for the underestimation of flow capacity and limited the overestimation of benchmark water levels in the
upstream area of the catchment. However, this parameterization led to underestimation of the benchmark
water level in the downstream area of the catchment. This analysis is confirmed by peak ratio values consid-
erably higher than 1 for G1, G2, and G3 and considerably lower than 1 for G4 (Table 8). It is worth noting
that the analysis of spatially distributed water levels at any of the selected lead times yielded the same con-
clusion inferred from an artificially dense gauge stations network. In models E-S1/S2 and E-S3, a high friction
coefficient was used to compensate for the overestimation of river flow capacity at the catchment scale.
This parametrization resulted in underestimation of benchmark water levels in the upstream area of the
catchment and overestimation of benchmark water levels in the downstream area of the catchment as
shown in Figure 5. These results are confirmed by the analysis of the peak ratio values (Table 8). Similar to
model R3-S3, a dense gauge network was required to highlight errors in model implementation. Conversely,
a similar diagnosis could be inferred from the analysis of the spatial pattern of distributed water levels at
any of the selected lead times.

The qualitative description above has been quantified by a simple linear fitting of the values of modeled
and true water levels by

Water level; modeled values5l1 �Water level; benchmark values1l2; (7)

where l1 and l2 are the coefficients of the linear regression. The results of this simple linear fitting are
reported in Table 9. The coefficient l1 is close to 1 for models 30-Bath and R3-S1/S2; higher than 1 for model
R3-S3; and lower than 1 for models E-S1/S2 and E-S3.

The analysis above suggested that, despite models R3-S1/S2 and E-S3 being affected by similar absolute
errors in the assessment of flow capacity at the catchment scale, model R3-S1/S2 allowed for a more realis-
tic representation of inundation dynamics. In this study site, where variations in river width are relevant
(section 6.2), RS-derived river width values provided an effective surrogate representation of geometric
channel variability which proved to be relevant for the modeling of flood inundation dynamics. Further-
more, in model R3-S1/S2, width variability acted as geometrical roughness that partially compensated for
the overestimation of the real flow capacity at the reach scale.

The next paragraph shows how a simple analysis of the spatial distribution of modeled and benchmark
water levels and of their sensitivity to small variation of river roughness could provide an effective strategy
for the detection of inappropriate geometrical representations of river bathymetry. In this study site, this
diagnosis was successful even at the very early stages of the flood event; that is, as early as 24 h before the

Table 9
Values of Coefficients l1 and l2 of the Linear Regression of Modeled and Benchmark Inundation Level at Different Lead
Times

Lead time

Model

30-Bath R3-S1/S2 R3-S3 E-S1/S2 E-S3

l1 l2 l1 l2 l1 l2 l1 l2 l1 l2

tPeak,Up 224 h 0.95 0.27 0.90 0.88 1.19 20.55 0.65 4.30 0.71 2.26
tPeak,Up 212 h 0.98 0.14 0.95 0.16 1.18 22.14 0.75 4.13 0.77 2.62
tPeak,Up 0.99 0.15 0.98 20.20 1.20 23.47 0.83 3.80 0.84 2.46
tPeak,Up 112 h 0.99 20.30 0.95 20.23 1.14 23.01 0.76 4.68 0.80 2.85

Note. tPeak,Up, flood peak time at the upstream boundary of the computational domain. Models 30-Bath, R3-S1/S2, R3-
S3, E-S1/S2, and E-S3 as identified in Tables 3 and 7.
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flood peak at the input point of the computational domain. Figure 6 shows the spatial distribution of mod-
eled and benchmark water levels at tPeak,Up 224 h and at tPeak,Up 212 h for models 30-Bath, R3-S1/S2, R3-
S1/S2, and R3-S3. For each model implementation, the graph shows the results for the Manning’s roughness
value selected based on the analysis at the catchment scale (nCS, Tables 7 and 8) and when each of these
selected values was decreased or increased by 0.01 m21/3 s (with the exception of model R3-S3, for which
the increment was 0.005 m21/3 s). Table 10 lists the coefficients of the linear regression of modeled and
benchmark water levels for each model realisation of Figure 6. In robust model implementations, such as
30-Bath and R3-S1/S2, modeled and benchmark water levels aligned along the 1:1 line for the Manning’s
value selected from the analysis of the performance metrics evaluated at the catchment scale (i.e., RMSE,
PR, CSI, and WLS). Conversely, when lower or higher Manning’s roughness values were used, the models
consistently underestimated or overestimated the benchmark water levels. For these model simulations, all
the points in Figure 6 were either below or above the 1:1 line (the discrepancy was less evident downstream
because of the impact of the tidal boundary conditions), and the slope coefficient l1 was either lower or
higher than 1 (Table 10). These results were consistent at the two selected lead times. The patterns of the
spatial distribution of modeled and benchmark water levels for model R3-S3 were quite different. When the
Manning’s roughness parameter suggested by the analysis of the performance metrics at the catchment
scale was adopted, modeled water levels overestimated benchmark water level values upstream and under-
estimated benchmark water level values downstream. Upstream overestimation and downstream underes-
timation decreased and increased for lower values of Manning’s roughness coefficient, while increased and
decreased for higher values of Manning’s roughness coefficient. As a consequence, the points in Figure 6
were distributed around a fictitious line having a slope higher than 1, as confirmed by the l1 values in Table
10. Conversely, for model simulations based on geometry E-S1/S2 and E-S3, the points in Figure 6 were dis-
tributed around a fictitious line having a lower slope than the 1:1 line as shown by the l1 values in Table 10.

7. Conclusions and Future Work

Knowledge on river bathymetry is essential to simulate floodplain inundation. River depth and shape can-
not be systematically observed remotely and field data are expensive and extremely rare. A parsimonious
methodology is needed for the definition of effective river bathymetry to support the implementation of
operational flood forecasting hydraulic models. In this paper, a detailed field database and a numerical
experiment were used to (i) investigate which simplified geometries allowed sufficient physical representa-
tion of inundation dynamics; (ii) outline a methodology for the preliminary off-line assessment of river
geometry; and (iii) suggest a strategy to detect errors in this preliminary assessment.

The hydraulic model LISFLOOD-FP was used to simulate a hypothetical flood event in a meandering reach
of the Clarence River (Australia), for which detailed bathymetric data were available. A high-resolution
model simulation based on this detailed bathymetric data set was considered as the benchmark for ranking
the performances of a number of coarser model realizations in which the channel was represented using

Table 10
Values of Coefficients l1 and l2 of the Linear Regression of Modeled and Benchmark Inundation Level at Different Lead
Times for Different Values of the River Roughness Coefficient

Lead time
Roughness
coefficient

Model

30-Bath R3-S1/S2 R3-S3 E-S1/S2 E-S3

l1 l2 l1 l2 l1 l2 l1 l2 l1 l2

tPeak,Up 224 h nCS – a 0.71 20.06 0.67 1.03 1.33 22.29 0.59 3.79 0.61 2.02
nCS 0.95 0.27 0.90 0.88 1.19 20.55 0.65 4.30 0.71 2.26
nCS 1 a 1.14 0.21 1.09 0.70 1.06 1.29 0.71 4.51 0.79 2.59

tPeak,Up 212 h nCS – a 0.77 20.51 0.70 0.38 1.32 24.61 0.66 3.87 0.64 2.49
nCS 0.98 0.14 0.95 0.16 1.18 22.14 0.75 4.13 0.77 2.62
nCS 1 a 1.11 0.76 1.11 0.24 1.09 20.43 0.83 4.34 0.88 2.79

Note. nCS , Manning’s roughness parameter suggested by the analysis of the performance metrics at the catchment
scale. a 5 0.005 m21/3 s for R3-S3; a 5 0.01 m21/3 s elsewhere. tPeak,Up, flood peak time at the upstream boundary of the
computational domain. Models 30-Bath, R3-S1/S2, R3-S3, E-S1/S2, and E-S3 as identified in Tables 3 and 7.
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simplified geometries derived from a combination of field data, global database, and RS data. Using this
study site as a test-case, a methodology was developed for parsimonious representation of geometrical var-
iability with inundation extent and level found to be more sensitive to river bathymetry than roughness.

The first outcome of this study was identification of a rectangular, width-varying shape with uniform longi-
tudinal slope as the most effective simplified geometrical model. Second, a methodology for the prelimi-
nary assessment of river geometry was outlined. Specifically, for the implementation of a rectangular,
width-varying shape, width values can be derived from RS data while depth values can be assessed using a
combination of global databases and limited field data. Where RS-derived width data are not available or
show negligible reach variability, an exponential cross-section shape was recommended. In this latter sce-
nario, shape, depth and width were estimated based on a thorough comparison between limited field data,
remote sensing data and at-a-station equations. Field data collection is limited to the measurement of river
cross sections at a minimum of three locations evenly distributed along the river reach under investigation.
Where measurements of the study reach are not feasible, exploration of a similar length of the adjoining
river reach is advised. Measured river cross sections should have different width, and, when applicable,
should be located in the proximity of geomorphologic features (such as restrictions and widenings as iden-
tified by a visual analysis of Google Earth). Median or mean shape coefficient values are advised. A parabolic
shape could represent a viable solution to avoid near-rectangular and near-triangular cross sections. Such a
preliminary assessment of river geometry has the potential to reduce the uncertainty of an ill-posed prob-
lem and support RS-based data assimilation or calibration studies, as advocated by many previous studies
(e.g., Durand et al., 2014; Garambois & Monnier, 2015; Garc�ıa-Pintado et al., 2015).

A number of data-scarce scenarios were hypothesized to investigate the effects of errors in the representa-
tion of river geometry and flow capacity on inundation dynamics. The third outcome of this is study is the
demonstration that the analysis of the discrepancy between modeled and benchmark water levels at the
full catchment scale revealed errors in the model implementation. Specifically, distributed water levels
derived from a synthetic RS observation acquired as early as 24 h before the flood peak at the input point
of a short river reach was useful to diagnose errors in the model implementation. In a real case study, such
a comparison could be used to complement the information on model accuracy provided by lumped per-
formance metrics such as the WLS (Savage et al., 2016a), the Student’s t test (Mason et al., 2009), and the
RMSE (Stephens et al., 2012).

In the implementation of LISFLOOD-FP used in this study, river bathymetry is discretised using a number of
cells. A subgrid version of LISFLOOD-FP has been developed (Neal et al., 2012, 2015) for flood modeling at
continental to global scale, where a computational grid size larger than river width has to be used (e.g.,
Schumann et al., 2015). Its application at the smaller scale of operational flood forecasting systems should
be coupled with algorithms designed to downscale coarse model outputs to the desired resolution (e.g.,
Schumann et al., 2014). The fine-scale analysis developed in this study could be useful to benchmark sub-
grid model realizations where channel flow is modeled using a specific routine. In this specific routine, the
use of analytical equations to compute channel wetted area and perimeter enhances the sensitivity of pris-
matic channel geometry to roughness values. Along with the possibility of using a prismatic channel within
the subgrid modeling framework, it would be interesting to test the considerations on surface roughness
and geometrical roughness developed in this case study.

Clearly, there are limitations to extrapolating the findings of this study to other flood events and other
catchments and further testing to explore the relevance of flood magnitude and the relative importance of
river incision, width variability and sinuosity is required. Moreover, in the numerical experiment discussed
here, river bathymetry was the only source of uncertainty. In a real case scenario, both epistemic uncertain-
ties (attributable to the imperfect knowledge of the processes) and aleatory uncertainties (resulting from
the randomness of systems and processes) should be taken into account (Beven & Freer, 2001).

This study aimed to shed light on the complex patterns and dependencies between river bathymetry,
roughness, and inundation dynamics. The importance of structural correction provided by an adequate rep-
resentation of channel geometric variability and the potential benefit of acquiring satellite images at the
early stages of a flood event were highlighted by this numerical experiment. Specifically, this numerical
experiment showed the potential informative value of comparing patterns of modeled and RS-derived spa-
tially distributed water levels. However, in a real case scenario, the impact of uncertainties in RS-derived
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observations on the use of this data for the diagnosis of errors in model implementation and thus improve
floodplain forecasting skill has to be carefully evaluated. Finally, the existence of epistemic and aleatory
uncertainties clearly imply that models should not point out a singular ‘‘best performing’’ simulation but
multiple acceptable models for the provision of possibility of inundation maps (e.g., Aronica et al., 2002;
Neal et al., 2013; Savage et al., 2016a)
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