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1. Introduction

1.1 General Introduction

Fire is one of the most important ecological drivers on the planet. Whilst its initial

impacts upon the environment are seemingly destructive, fire also plays an import-

ant role in the functioning and regeneration of ecosystems, along with providing a

catalyst for changes to ecosystem successional processes. Approximately 348Mha

of the earth’s surface is affected by fire every year [24], with fire activity predicted

to increase due to the effects of a changing climate [10, 47, 14]. Fires can occur in

almost all of the varied land cover types throughout the world, with the exception

of desert and arctic areas, with the spread and intensity of fire driven by fuel volume,

fuel moisture and weather conditions. Whilst lightning is generally the cause of fires

in more remote parts of the landscape, the majority of fires are started by humans.

In the United States for instance, it is estimated that 84% of all wildfires are started

by humans, with strong correlation between fire location and human activity [1, 44].

The economic impact of wildfire is estimated to be between USD 70 billion and USD

348 billion annually in the United States alone [81], and in Australia the impact of

individual fire events on residences, agriculture, forestry and the environment can

reach beyond AUD 1 billion alone [79]. Fire also contributes a significant amount

to global carbon emissions into the atmosphere, with [87] estimating total wildfire

emissions worldwide at 3.53Pg annually, which equates to almost 40% of of total

carbon emissions [70].

With these impacts in mind, finding methods to efficiently measure and monitor

wildfire is of vital importance. Information about fire in the environment can assist

in mitigation planning and asset management for fire authorities, assists in the min-

imisation of fire impacts on human lives and communities, and of course can help

to address problems such as carbon accounting and ecosystem impacts of fire.

Early detection of potential wildfires is also vital to assist with the strategic and ef-

fective management of wildfire situations. Obtaining this information in an accurate

and timely manner in-situ can be a difficult task. Historically, fire authorities have

placed equipment and manpower in elevated areas for fire spotting purposes, with

fire reporting to this day remaining reliant upon eyewitness accounts from people

close to the fire activity. In populous areas this type of fire detection can be effect-

ive at generating location information about a fire, and may generally estimate the

time of ignition well, but lacks the ability to generate quantitative information about

fire size, intensity, growth rates and general behaviour. However, fires may also

go undetected in remote, underpopulated areas, or where resources do not exist to

capture all fire activity comprehensively.

Remote sensing has become a vital source of information about wildfire activity

where traditional coverage is lacking. It also has become a vital source of informa-

tion with regard to fire intensity, burned area, and for estimates of carbon emission.
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1.1. General Introduction

Satellite remote sensing of fire is possible due to the radiative emission of wild-

fire and the transmittance of important wavelengths of electromagnetic radiation

through the earth’s atmosphere. Depending upon the type of fuel and weather con-

ditions, wildfire generally burns at between 700–1000K, which provides a peak in

blackbody radiative output at around 4µm in the electromagnetic spectrum. This

peak in radiative energy is several orders of magnitude above the radiative emission

of land at a typical background temperature of 300K. This wavelength in the electro-

magnetic spectrum happens to coincide with a ”window” or peak in the atmospheric

transmittance of the earth’s atmosphere, which means that radiation emitted at

this wavelength travels relatively unimpeded through the atmosphere into space.

These two factors contribute to the situation where the radiation at the peak fire

wavelength is not only easy to detect, but that fire activity stands out in high con-

trast to the background temperature. This means that fires do not have to be large

relative to the ground sampling size of the sensor in order to be detectable as anom-

alous energy sources. This lucky break has led to the proliferation of methods for

fire detection from various satellite remote sensors.

The possibility of fire detection and monitoring was first explored by [11], whose

work used a bispectral method to attempt to identify hot sub-pixel targets within a

uniform background. This was the first work utilising remote sensing to attempt to

identify characteristics of anomalous temperatures, including the portion of pixel

affected by the anomalous activity, and the temperature of the anomaly source. This

method was utilised for a number of different fire detection algorithms for a number

of different sensors [48, 63, 57, 42], and is still the main driver of the WF-ABBA fire

algorithm used upon GOES satellites over the Americas [45]. A number of flaws were

identified in the use of this bi-spectral relationship, and these are highlighted in [22],

which included the sensitivity of the method to error when dealing with small fires.

In the mid-1990s, a new method of anomaly detection was proposed by [40], which

involved use of the contextual area surrounding the potential anomalous pixel as the

source of the estimate of the temperature of the target pixel. This method quickly

caught on as the preferredmethod of determining fire background temperature, and

became the basis for a number of fire detection algorithms [15, 23, 43, 9, 19, 61, 76],

and is themain driver of fire background temperature for the commonly usedMODIS

[26] and VIIRS [75] active fire detection products.

The detection of fire from satellite remote sensor systems involves trade-offs

between spatial, radiometric and spectral resolutions, and varying accuracy - all de-

pendent upon the type of sensor in use for the task. Early remote sensing sensor

systems (e.g. AVHRR [16]) lack the spectral band-pass widths found on more mod-

ern sensors (e.g. VIIRS [92]), and often have poor radiometric resolution and low

saturation temperatures. This hampers their usefulness for accurate description

of fire activity. The bulk of effort from the scientific community in this field in the
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1990s and 2000s focused upon the sensors in Low Earth Orbit (LEO), such as AVHRR,

MODIS, VIIRS, BIRD, Firebird, and others. Sensors in these polar orbits are set to

pass over the observation areas at specific times of the day (generally late morn-

ing or early afternoon) to maximise the effectiveness of the visible bands for image

capture. With the lower orbits of LEO sensors, generally between 450–900km, the

spatial resolution available is very high, enabling small areas of fire activity to be

identified in detail. Despite this, coverage of the temporal activity of fire is limited

due to their sun-synchronicity, with typically between 3 - 5 images available daily

from a constellation of LEO sensors such as MODIS. In the mid 2000s, advances in

the sensors being placed in geostationary orbits led to increased activity in the de-

tection of fire from sensors at this orbit. Whilst geostationary (GEO) satellites orbit

the earth at 35.786km, which leads to diminished spatial resolution due to the dis-

tance to the earth, these GEO sensors are fixed in their viewpoint of the earth, and

provide continuous coverage dependent upon the temporal resolution of the sensor.

This fixed view provides the ability to monitor change over time, and provides the

ability to approach fire detection using a different framework.

Whilst many efforts such as the WF-ABBA [45], GOES [95] and MSG-SEVIRI related

fire detection algorithms [28] focused upon extension of the single image contex-

tual algorithms into the GEO sensor space; innovative ways of using the temporal

stream of data supplied by GEO sensors started to appear in the mid 2000s. The

work of [27] first examined the modelling of the diurnal temperature cycle for land

surface temperature estimation, by way of a prescriptive model using data from the

METEOSAT sensor. Use of the diurnal cycle for potential fire anomaly isolation was

proposed in [84], which used a Kalman filter for temperature modelling purposes.

A number of different multi-temporal techniques for determining fire activity have

spawned from this work [86, 83, 85, 65, 13] and research continues to focus upon

refinement of background temperature modelling in the diurnal temporal space.

This decade has seen opportunities grow in the GEO space for more accurate fire

detection, with new sensors providing improvements in their temporal, spatial and

radiometric resolutions. The previous generation of GEO satellites launched in the

mid-late 2000s, which includes MSG-SEVIRI, MT-SAT2, and GOES 13-15, provided

between 15–30min temporal coverage of their respective full disk areas, with a typ-

ical spatial resolution of 4km in the thermal bands used for fire detection. These

sensors (with the exception of SEVIRI) are now making way for a new generation

of GEO satellites launched in the mid-late 2010s. The launch of AHI-8 [60] in 2014

by JAXA over the Asia-Pacific, followed by the launches of GOES-16 and 17 in 2016

and 2018 [72] has led to significant improvements in sensing capability. These new

sensors are capable of capturing full disk images with 10min recapture time, and the

spatial resolution of all infrared bands on these sensors is 2km. These sensors are

also capable of short term mesoscale captures, with areas of up to 1000 × 1000km
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1.2. Problem Statement

capable of being captured at one minute intervals. This gives an unprecedented view

into short-term changes on the earth’s surface, at a spatial resolution far more suited

to the isolation of fire activity. This drive from new sensors and data streams also

heightens the necessity for more research in this area, to most effectively utilise the

new information about the earth’s systems coming from these sources.

1.2 Problem Statement

Early and reliable active fire detection is of great importance to land managers, to

assist in risk assessment, mitigation strategies and minimisation of harm to both

people and assets [80]. With the timeliness of fire detection in mind, and with short-

comings in current LEO fire detection products due to temporal coverage [61], a

need for strategies and systems that apply predominately to geostationary sensor

imagery has been identified. Whilst geostationary sensors, especially those from the

current generation of new satellites (AHI-8, GOES-R), exhibit high temporal refresh

rates, their spatial resolution is far more coarse than the sensors that the current

standard fire detection products are based upon. The effect of systematic errors

that occur in the use of brightness temperature estimation from situational context

is acknowledged but poorly understood, and the effect of coarser spatial resolution

may exacerbate these errors further.

Whilst the common remotely sensed fire products are generally based upon tech-

niques that are applicable to discretely captured events, due to being based on in-

formation taken from sensors that move relative to the earth’s surface, geostation-

ary images allow for the continuous capture of information from a fixed location in

orbit over time. Leverage of the temporal domain for fire detection has been suc-

cessful from geostationary images using various methods [56, 65, 84, 66], but these

have focused upon deriving estimates based upon the data from individual pixels,

sacrificing the use of relevant spatial-based correlations. An opportunity lies in the

development of techniques that utilise both spatial and temporal relationships to

drive more robust and accurate estimation than those driven solely from either of

these domains.

Given the problems intrinsic to fire detection, and more broadly anomaly detec-

tion, techniques for estimation must be robust in the face of anomalies in any train-

ing process attached to them. Clouds, smoke and fires have large roles to play in

the necessity for secondary false alarm processes in current fire detection methods.

The focus of any estimation technique developed should be in mitigating the influ-

ence of these factors on the training, modelling and subsequent estimation process,

with a view to minimisation of these secondary tests that may introduce or exacer-

bate error in resultant anomaly attribution.
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1.3 Research Questions

In order to address the gaps identified in section 1.2, four research questions are

identified and outlined below:

Question 1. What is the effect of systematic and structural errors caused by the

use of spatial contextual estimation in common fire detection techniques?

Whilst contextual estimation is an accepted form of temperature estimation for

fire detection, there have been no studies previously that demonstrate the expected

errors in such estimates, or the specific landforms and conditions that may propag-

ate these errors. This question aims to provide a comprehensive breakdown of the

expected error in such estimations based upon application to imagery from the AHI-

8 geostationary sensor, and examine the causes over a number of case study areas.

Question 2. How can we use the common diurnal variation of upwelling radiation

to estimate brightness temperature in a robust fashion?

Areas at similar latitudes will receive similar solar radiation budgets — use of

this assumption can allow us to create models of the expected temperature based

upon the standardised form of the diurnal cycle for a specific latitude. This question

aims to derive a method of temperature estimation that takes advantage of the high

temporal frequency of the imagery from AHI-8 to create a time-corrected idealised

model of diurnal variation in brightness temperature. This will exploit non-cloud

affected areas and apply this information to more obscured regions. This technique

is called the Broad Area Training method (or BAT).

Question 3. How effective is the new Broad Area Training method at identifying

fire-related brightness temperature anomalies in comparison to other fire detection

methods?

This question addresses the ability of the brightness temperature estimation

method outlined in the response to Question 2 to identify anomalous pixels in a

near-real-time fashion. The method is tested over a range of anomaly temperature

thresholds, and comparisons are made to fire products derived from low earth orbit

imagery to compare timeliness and potential for omission error.

Question 4. How can we use similarities in image characteristics over time to

improve temperature estimation over a single-image contextual approach?

Given the weakness of contextual estimation results as a function of available

adjacent land pixels, an opportunity lies in leveraging similarities in image values

over both time and a wider area to provide an improved set of candidate pixels for

temperature estimation. This question outlines a new method of spatio-temporal

sampling of candidate training pixels for use as brightness temperature estimators

in subsequent imagery. The work identifies criteria for training pixel selection, and

compares estimates of brightness temperature back to those derived from contex-

tual estimation.
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1.4. Thesis Structure

1.4 Thesis Structure

Presented in this thesis are four research chapters that address the questions asked

in 1.3. Chapter 2 tests the currently accepted method of background temperat-

ure estimation over imagery from a geostationary sensor to determine the errors

associated with this method’s use, along with isolation of the potential causes of

such errors. Chapter 3 of the thesis introduces the Broad Area Training method

of brightness temperature estimation, which provides temperature fitting of can-

didate pixels based upon the idealised diurnal cycle of pixels at similar latitudes.

Chapter 4 examines an application of the method outlined in Chapter 3 for the pur-

pose of isolating potential temperature anomalies, plus provides a comparison to

commonly used polar earth orbiting sensor based fire products to determine rates

and times of detection. Chapter 5 introduces the use of the spatio-temporal selec-

tion method for background temperature estimation, and provides example images

and comparisons to contextual estimates for a number of case study areas. Finally,

the thesis concludes with a synthesis chapter which collates the research presented

in the thesis and discusses the potential of the methods presented not only for fire

detection purposes but for other types of environmental monitoring.
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2. Estimating Fire Background Temperature at a Geostationary Scale — An Evaluation of
Contextual Methods for AHI-8

2.1 Introduction

Satellite remote sensing has become a vital tool in the arsenal of land managers,

not only for the initial detection of active fire, but as part of inputs for modelling

and planning purposes. Timely and accurate fire information from remote sensing

enables preparation and planning for mitigation activities, along with providing vi-

tal information about fire behaviour and characteristics [78]. Increasing importance

is being placed upon active fire products to calculate metrics such as fire radiative

power and burn severity [68], in order to obtain an understanding of how the envir-

onment burns, and also to provide input for environmental modelling and quantify-

ing outputs such as carbon emissions from fire.

Active fire detection from remote sensing relies on elevated levels of radiation in

the infra-red wavelengths caused by the blackbody radiation emitted from fire [68].

The typical energy emitted by fire at medium wave infra-red (3 – 4µm) wavelengths

can be several orders of magnitude higher than regular radiation levels, which are

primarily made up of thermal emission from the surface and solar reflection [67, 29].

This disparity in energy levels allow fires that are much smaller than the pixel area to

be detected, as the extra energy from a fire will overwhelm the background level of

radiation [78]. This propensity of fire to overwhelm the background signal presents

a problem for fire detection purposes as well. The ability to determine whether a

pixel is fire-affected is dependent upon knowing what the pixel should look like in

the absence of fire [23]. Accurate knowledge of the differential between fire signal

and background allows fire to be detected, and enables the calculation of common

fire-related metrics such as fire radiative power (FRP) [66].

Without the ability to directly measure the background temperature of a pixel

in the event of fire, fire algorithms have largely utilised the land area surround-

ing a target pixel to facilitate estimation of the background temperature, a method

known as contextual estimation [21, 19, 9, 73, 46, 66, 88]. For pixel brightness tem-

peratures in the medium wave infrared, spatial autocorrelation is primarily driven

by latitude, with adjacent pixels receiving similar amounts of solar radiation, along

with climatic conditions, which homogenise land cover over localised regions. This

was highlighted in [66], who stated the assumption of neighbouring pixels having

the same surface background characteristics was implicit in the fire algorithm de-

veloped in that work. This work [66] also stated that ”... the extent to which this is

true depends of surface spatial homogeneity and the sensor spatial resolution.” There

has been no thorough examination of how surface homogeneity affects the accuracy

of fire detection algorithms, despite this assumption being prevalent in active fire

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke, K.,
Jones, S., Engel, C., & Skidmore, A. (2018). Estimating Fire Background Temperature at a Geo-
stationary Scale — An Evaluation of Contextual Methods for AHI-8. Remote Sensing, 10(9). ht-
tps://doi.org/10.3390/rs10091368
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algorithms and products. Contextual measurements are also influenced by obscura-

tion due to cloud or smoke, which may lead to decreased infra-red radiation in pixels

adjacent to a target pixel [58]. Additionally, adjacency to water bodies may elimin-

ate some pixels from being used in contextual calculations, with islands and coastal

regions particularly susceptible to errors caused by reduced land surface availabil-

ity. Examples of how these scenarios may influence the calculation of background

temperature may be seen in Figure 2.1.

Figure 2.1: Examples of contextual temperature determination scenarios — (a) uniform con-

textual surroundings, with low spatial variance; (b) land cover change (yellow/green), with

pixels of multiple land cover classes contributing to the estimate; (c) waterbodies (dark blue),

which permanently obscure part of the contextual kernel; (d) cloud obscuration (hatched blue),

which intermittently cause missing contextual data; and (e) smoke (grey), which provides dir-

ectional partial obscuration of downwind pixels, and is less likely to be masked out of images

than cloud.

Land surface temperature is a well covered topic in remote sensing [50, 17, 69,

93, 52, 96], but most techniques focus upon use of thermal infrared (8 – 12µm),

which lacks a solar reflection component. This has led to an integration of land

surface temperature techniques encompassing a combination of medium-wave and

thermal infrared bands for fire detection purposes [26, 90, 9, 66, 62], due to the

differential response between these two wavelengths to emitted energy from fire.

Such methods rely on accurate knowledge of the sensor response to temperature

in both infrared bands and their relation to one another, and often rely on arbit-

rary statistical thresholds to relate the two bands for detection purposes, and stud-

ies such as [22] have highlighted issues with the use of bispectral methods of fire

detection. Algorithms exclusively using medium-wave infrared for background tem-

perature detection have generally used this approach for calculation of metrics such

as FRP, which is less reliant on highly accurate temperature information to achieve

satisfactory results [95, 65, 91].

The successful launch of the AHI-8 sensor in 2015 has expanded the availability

of geostationary satellite image data for the Asia-Pacific, both in the spatial and

temporal resolution domains [39]. The increased spatial resolution of the sensor,

which achieves 2km × 2km resolution in the medium wave and thermal infrared

bands, and the increased temporal coverage of the sensor, which records an as-yet

unparalleled 10min refresh rate for geostationary full disk images, provide oppor-
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tunities to image and analyse the sensor’s coverage area in far greater detail than

previously [30]. The fire detection and examination capabilities of the sensor have

already been demonstrated in multiple studies [59, 94, 88, 31]. These studies use a

mix of contextual and multi-temporal techniques to detect and monitor fire activity,

but as yet there has been no definitive fire algorithm for all conditions adopted for

use with this sensor.

Fire detection algorithms perform a number of tests to not only isolate elevated

sources of radiation, but to also eliminate false positive detections. Tests are usually

made to mask cloud, which can trigger some detections through elevated reflectivity

in themedium-wave infra-red, formasking excess solar reflectivity in the form of sun

glint, and to flag areas of water, which will bias infra-red measurements downwards.

Once these sources of error are eliminated from evaluation, decisions are then made

about the suitability of pixels surrounding a potential fire for fire background tem-

perature calculation. For instance, the MODIS MxD14 product [26] uses values ini-

tially from a 3 × 3 (3km) pixel window surrounding the target pixel (without the

leading and trailing pixels in the cross-swath direction due to pixel smearing) to

determine this temperature. The algorithm then tests how many suitable contex-

tual pixels are available for evaluation, with a successful set of target pixels isolated

for temperature calculation when the number of valid contextual pixels reaches at

least 25% of the total, with a minimum of eight contextual pixels used for calcula-

tion. If the algorithm cannot find sufficient pixels at the first window (in this case,

only six pixels are available and eight are required), the window expands to 5 × 5

pixels, and the tests are repeated. If the test fails again, the cycle repeats expanding

the window to the maximum size of 21 × 21, at which point the tests conclude with

no result.

This technique of the expanding window is not exclusive to use for MODIS. The

VIIRS VNP14 product [75] has a background temperature calculation based upon a

starting window of 11 × 11 (∼ 4km in length), a success rate based on 25% of valid

contextual pixels available for calculation and a 10 pixel minimum, and a maximum

window range of 31 × 31 (∼ 10km in length). The Fire Identification, Mapping

and Monitoring Algorithm (FIMMA) for use on AVHRR sensors [49] started with a

5 × 5 window, ended at the 41 × 41 pixel level, and used 35% of total contextual

pixels available with a minimum number of eight pixels used. Work involving fire

detection using Landsat-8 [76] involved evaluation of a fixed 61 × 61 pixel window

for background temperature calculation, with no limits placed upon the number of

pixels used. Geostationary satellite algorithms apply these contextual tests as well

- the MSG-SEVIRI sensor fire algorithm [66] starts at a 5 × 5 window (15km due to

the sensor spatial resolution), with a maximum window size of 15 × 15 (45km) eval-

uated before calculation failure. The pixels inside each window are tested against

cloud, sun glint and anomalous differences betweenmediumwave and thermal infra-
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red, and only if at least 65% valid context pixels are available will an estimation take

place. This work on SEVIRI has also been extended for use on the GOES sensors [93],

with similar parameters used for contextual pixel utilisation.

These expanding windowmethods for evaluating temperature from pixel context

are applied to sensors with different spatial and radiometric characteristics, so they

should differ slightly in application based upon each sensor. Despite this, apart

from a rough relationship of spatial scaling between some of the products, there is

no general consensus as to the ideal dimensions for contextual window evaluation,

and indeed no optimal value for minimum percentage of valid contextual pixels to

use for deriving an accurate background temperature.

The objectives of this work are to examine common methods of deriving land

surface temperature from a target’s surroundings in the context of fire detection.

To achieve this, the enhanced temporal and spatial capabilities of the AHI-8 sensor

are exploited in a large-area study. This paper presents the effects of variation

of examined window sizes and valid contextual pixel percentages on background

temperature. This work also highlights the challenges faced in using contextual es-

timation effectively, with in depth examinations of a number of case study areas to

determine the effectiveness of contextual temperature calculation.

2.2 Method

2.2.1 Data

This study utilises images from the Advanced Himawari Imager-8 (AHI-8), a geosta-

tionary sensor located at 140.7° E longitude [60], data from which was obtained from

the Japan Meteorological Agency (JMA) via the Australian Bureau of Meteorology

(ABOM). This geostationary sensor provides coverage over the Asia-Pacific region

over 16 bands, with an image captured every 10min. Images were obtained from

the 3.9µm medium-wave infrared band (AHI-8 Band 7) data, which is available in

Australia from the National Computing Infrastructure (NCI). Dates were randomly

selected for 36 days of the year 2016, with a distribution of three per calendar month

in order to provide a representative sample of times in the results. The Julian dates

selected were days 6, 10, 20, 35, 36, 41, 71, 72, 82, 97, 101, 103, 133, 144, 149, 153,

164, 173, 184, 188, 200, 222, 230, 236, 253, 257, 274, 279, 286, 290, 314, 322, 323,

343, 353 and 355 of 2016. A single image was examined at each of these days for the

full disk examination, which was taken at 0500 UTC. This time was selected for full

disk processing to maximise the amount of the land surface in daylight, along with

examination of much of the disk at, or near, peak daily temperatures. This timing

also coincides with the afternoon overpass of the VIIRS sensor for much of the land

areas of the disk. This study utilises a cloud mask algorithm used in a study of AHI
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fire detection by [94], which was adapted from use on the GOES–11 and GOES–12

geostationary sensors from [95]. This mask is calculated using AHI Bands 3, 7 and

13, along with solar zenith information at each image time, from products supplied

by ABOM.

To enable efficient processing of full disk images the size of those captured by

AHI, each full disk image was divided into component arrays of 500 x 500 pixels in

size. The number of land pixels in each of these component arrays was then coun-

ted, and arrays containing less than 100 land pixels were discarded from analysis.

Along with these ommitted areas, arrays comprising solely of land constituting the

continent of Antarctica were also discarded. Once these tiles were identified, se-

lections from each image with a 12 pixel buffer (for expanding window analysis

purposes) were made of each tile and processing was performed. The areas with

sufficient land for analysis are shown in Figure 2.2.

Figure 2.2: (a) land area of the full disk covered by the AHI sensor; (b) 500 × 500 image tiles

with sufficient land surface processed for the full disk analysis. The horizontal banding of the

full disk image in (b) also corresponds to the areas selected for the cloud analysis presented

in Table 2.2.

As the focus of this study is determination of brightness temperature of land

pixels, a land/sea mask supplied as part of the AHI ancillary data was applied to im-

agery to mask non-land pixels. Pixels close to the edge of the full disk are stretched

over a large area of land surface, and also suffer from refraction due to the longer

transmission period through the atmosphere. Pixels that have a sensor zenith angle

greater than 80° were masked from further analysis using the AHI sensor ancillary

product provided by ABOM.
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2.2.2 AHI Disk Characterisation

Cloud is a major source of occlusion whenmeasuring brightness temperature values.

In order to obtain an understanding of the role cloud cover plays in an AHI full

disk image, and by extension the distribution of clear sky pixels for analysis, the

AHI image was broken into sub-images of 500 rows, for the first 5000 rows of the

5500 × 5500 image. The number of land pixels available in each of these sub-images

was tallied, and the cloud coverage from the cloud mask was recorded for each full

disk image. This breakdown of the AHI full disk into sub-images can be seen in the

horizontal banding depicted in Figure 2.2b.

The land area covered by AHI can be quite discontinuous, especially in the equat-

orial regions where many islands are present. These islands and coastal areas will

have permanent gaps in their contextual coverage area due to the land forms sur-

rounding them. In order to gain an understanding of the magnitude of these stand-

ing anomalies, an analysis of the land mask was conducted. Pixels were selected by

the number of contextual pixels available for estimation during a cloud-free period,

and categorised into percentage classes (75%, 65%, 55%, 45%, 35%, 25%, 15%).

Pixels that had less than the required percentage of pixels available on the land

mask were flagged, and counts of these unusable pixels were tabled.

To investigate the effectiveness of contextual estimation at a full disk level, the

mean of all available contextual pixels was taken for each window size for each cloud-

free pixel in the 36 images selected for study. The difference between each of these

contextual estimates and the benchmark central pixel was calculated, and mean and

standard deviations of these differences were aggregated for analysis. These values

were further broken down by the exact percentage of contextual pixels available at

each window level, in order to understand how percentage of valid pixels affects the

ultimate calculation of contextual temperature.

The size of the land area covered by individual pixels in a geostationary image

increases as the sensor zenith angle increases. To determine whether this expansion

of pixel area has an effect on contextual temperature calculations, all pixels from the

dataset with contextual estimates were then divided into classes based upon their

sensor zenith angle (eight classes spanning 10° from 0 - 80°), and statistics were

aggregated for each of these classes.

2.2.3 Expanding the Window

As noted in the introduction, there have been many approaches taken to determine

a suitable window size for contextual calculation, and no general consensus has

been reached for ideal parameters, apart from a rough 10km × 10km maximum

window size for the LEO sensor algorithms. For a geostationary sensor like AHI,

we are limited as to the spatial bounds of the minimum window size we can select,
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as the sensor resolution prevents us from resolving at better than two kilometres in

the infra-red bands. A minimum sampling window of 5×5 has been set around each

pixel, which corresponds to 10km × 10km at sensor nadir. A number of window

sizes were examined, with values selected in two pixel increments up to a maximum

window size of 25 × 25 pixels. Each of these windows had a count of valid pixels,

and the mean and standard deviation of differences between the contextual mean

and the central pixel value recorded for each pixel for each image.

A common feature of contextual algorithms is the use of a threshold of valid

pixels as a portion of total examination window as a limiting factor for estimation

validity. If the target pixel has at least the number of valid context pixels set by this

threshold, the target’s contextual pixel values are used to calculate a temperature

estimate, otherwise the target is ignored. There is no consensus uponwhich to base a

definitive decision about valid context percentage choice - the most commonly used

success criterion is 25% or an arbitrary number of pixels, as used by both MODIS

and VIIRS in their respective fire products. This study has chosen to examine the use

of seven percentage thresholds of contextual pixel availability, ranging from 75%

to 15% in 10% increments. A pixel is deemed to have sufficient contextual data to

make a calculation when the number of valid contextual pixels is equal to or greater

than the selected percentage over the window being examined. For example, at the 5

x 5 window size, nine or more valid pixels need to be available for a temperature to

be calculated at the 35% threshold. At some thresholds, land pixels with proximity

to oceans and lakes may have insufficient land available to calculate a temperature.

Another commonly utilised feature of contextual algorithms is the expanding

window. When insufficient data is available at an inner window size, the window

of examination grows outwards until it obtains sufficient data to make a temper-

ature determination. For a true evaluation of the effects of the expanding window

on contextual estimation, it is important to know not only how often this window

expansion occurs, but the effect the expanding window has upon calculated con-

textual estimations. For the expanding window section of this study, the portion

of data with full contextual coverage at the 5 × 5 window was analysed separately

from pixels with at least one contextual pixel obscured. From the remaining pixels

for each of the valid context percentages, pixels with sufficient context available at

the 5× 5 were identified, and statistics calculated over these pixels. For the remain-

ing pixels with no solution at the 5× 5 window at each valid context percentage, the

window of examination was expanded to 7 × 7. At this point, the counts of valid

context pixels were totalled for the current window and all previous windows. If

the new number of contextual pixels was sufficient for the valid context percentage

to be met, a contextual estimate was calculated over all contextual pixels available,

and these statistics were recorded for reporting at the specified window size. After

this, the examination window was expanded, and the process was repeated. Once
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the window of examination reached 25× 25, some pixels were unable to find a solu-

tion based upon the selected percentage of valid contextual pixels. Counts of these

failed pixels were also recorded.

Also, some expanding windowmethods will in addition use an absolute threshold

for the number of valid contextual pixels required for temperature estimation. Once

the number of contextual pixels available satisfies this threshold of valid pixels,

a contextual estimate will be made based upon the available pixels regardless of

the valid context percentage set. The work presented in this paper also examined

the effects of using an absolute threshold of valid pixels of 10, similar to the VIIRS

VNP14 product. For this, the 5×5 window was firstly analysed, and as 10 pixels was

the cutoff for validity for the 45% valid pixel class at 5×5, no higher valid contextual

pixel percentages were examined. If a target pixel had either the required percentage

of contextual pixels available, or sufficient contextual pixels to reach the absolute

cutoff, the target pixel had a context temperature estimate calculated and recorded.

Where this requirement was not met, the window was expanded to the next window

size. If a target pixel did not reach either the valid contextual percentage or the

absolute threshold of contextual pixels by the 25 × 25 window, the target pixel was

recorded as a failure and tallied.

2.2.4 Case Study Evaluation

A series of case study areas have also been evaluated in a more in-depth fashion, due

to their land surface variation or their fire-prone nature. These areas include part of

south-eastern Australia, part of north-western Australia, a section of Kalimantan’s

east coast, part of central Thailand, part of eastern China, the central part of Honshu

in Japan, and part of Siberia east of Lake Baikal. Each of these areas consists of a

section of the AHI image measuring 200 x 200 pixels in size, with a small buffer to

provide data for pixels at the edge of the selected window. These study areas are

highlighted in Figure 2.3.

Table 2.1: Specifications for the timeframes, area of the AHI disk and UTC times for analysis

of each of the case study areas.

Case study area Start Date End Date AHI image area Time (UTC) Local time @ centroid

sea 2016-03-30 2016-04-29 [4400, 4600, 3050, 3250] 3:50 13:49
nwa 2016-10-23 2016-11-22 [3600, 3800, 2000, 2200] 5:00 13:32
bor 2016-02-14 2016-03-15 [2600, 2800, 1400, 1600] 5:40 13:22
thl 2016-02-28 2016-03-29 [1800, 2000, 800, 1000] 6:30 13:15
chn 2016-08-27 2016-09-26 [1000, 1200, 1600, 1800] 5:10 12:56
jpn 2016-05-03 2016-06-02 [900, 1100, 2500, 2700] 3:50 12:59
sib 2016-05-10 2016-06-09 [200, 400, 2000, 2200] 5:00 12:43

In order to provide a more representative understanding of how each of these

landscapes behaves during fire-prone periods, a selection of images for each case
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Figure 2.3: Case study areas selected for examination.

study area was made based upon the prevalence of fire over 2016. The monthly

VIIRS fire product (VNP14IMGML) [74] was subsampled for each of the study areas,

and a rolling window of 30 days was applied to the sum total of fires from each area

over the course of the year. The point of time exhibiting maximum fire activity from

this was then used as the central day in a 31 day window for in-depth analysis. The

image time selected for each case study area was also derived from the time of fires

detected during the day time period in each case study area. The selection criteria

for each case study area is detailed in Table 2.1.

The counts of valid context pixels, and the difference of the context pixel mean
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from the central pixel were obtained for each window size, for each image, for each

of the case study areas used for analysis. A visual examination of the causes of

contextual estimate variation was also conducted based upon the spatial distribution

of the mean temperature differences calculated, over window sizes from 5×5 pixels

to 11× 11 pixels, for each site.

2.3 Results

2.3.1 AHI Full Disk Characterisation

Cloud is a major impediment to any surface temperature estimation, and the area

covered by the AHI disk is no exception. At the 0500 UTC time point, on average

55.6% of assessable land surfaces on the AHI disk are covered by cloud, with cloud

coverage over land surfaces ranging from 45% to 73% over the images analysed.

Cloud cover is most common over the northerly quarter of the disk, with areas north

of AHI image row 1500 experiencing 68 – 74% cloud cover over the period examined.

A full breakdown of cloud cover statistics can be found in Table 2.2. These areas

of cloud cover, as determined by the cloud mask product, were removed from the

context analysis, and form the bulk of the missing data in the window examinations.

Table 2.2: Average and standard deviation of cloud coverage for the AHI land areas covered

in the study. The figures are an aggregate of 36 images recorded at 0500 UTC as mentioned

in Section 2.2.1, broken into horizontal slices of the AHI disk as shown in Fig 2.2.

AHI Image rows # of land pixels Mean % cloud SD % cloud

0 - 500 526506 74.1 15.7
500 - 1000 714119 69.1 15.0
1000 - 1500 663172 68.1 13.7
1500 - 2000 420460 49.2 23.0
2000 - 2500 184404 54.2 19.3
2500 - 3000 366370 62.7 10.4
3000 - 3500 248687 55.3 12.4
3500 - 4000 643030 28.6 14.0
4000 - 4500 793030 37.3 16.7
4500 - 5000 103387 58.1 19.4

Table 2.3 supplies a breakdown of pixels that are in permanent deficit of suffi-

cient contextual pixels for temperature estimation at each valid context percentage

at each window size. A requirement of at least 75% of contextual pixel availability is

quite restrictive given the landforms present, and at least 2.2% of all land pixels can-

not obtain this number of adjacent contextual pixels in the 5× 5 window. The num-

bers in this table are adjusted for all window levels preceding — an assessment of a

7× 7 window for instance takes into account pixels at the 5× 5 window at the same
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time to determine whether an estimation is possible over all of the context pixels

available to the target. These target pixels suffer permanent obscuration, and these

locations can be flagged as problematic for contextual calculation for all periods.

Table 2.3: Number and percentage of pixels that are lacking sufficient adjacent pixels to

provide contextual estimation at various window sizes and percentages across the AHI disk.

A total of 4,663,165 AHI land pixels were evaluated.

Window size
Percentage of context pixels required for assessment
>75% >65% >55% >45% >35% >25% >15%

5× 5 103801 74712 46141 18523 10918 4840 2389
2.23% 1.60% 0.99% 0.40% 0.23% 0.10% 0.05%

7× 7 136747 97771 54351 25771 13842 7322 3873
2.93% 2.10% 1.17% 0.55% 0.30% 0.16% 0.08%

9× 9 165592 110470 61786 31008 17290 9436 4544
3.55% 2.37% 1.32% 0.66% 0.37% 0.20% 0.10%

11× 11 192298 129744 73595 37000 21033 11510 5563
4.12% 2.78% 1.58% 0.79% 0.45% 0.25% 0.12%

13× 13 217235 150574 86662 43558 24681 13651 6794
4.66% 3.23% 1.86% 0.93% 0.53% 0.29% 0.15%

15× 15 240738 165472 97107 49446 28451 15689 7549
5.16% 3.55% 2.08% 1.06% 0.61% 0.34% 0.16%

17× 17 263862 182197 106023 55620 31895 17482 8466
5.66% 3.91% 2.27% 1.19% 0.68% 0.37% 0.18%

19× 19 286131 195443 114230 60973 35605 19496 9159
6.14% 4.19% 2.45% 1.31% 0.76% 0.42% 0.20%

21× 21 307516 210405 122986 66290 38851 21809 10196
6.59% 4.51% 2.64% 1.42% 0.83% 0.47% 0.22%

23× 23 328452 226933 132790 71657 42888 24078 11199
7.04% 4.87% 2.85% 1.54% 0.92% 0.52% 0.24%

25× 25 348645 240456 142150 75910 46572 25839 12100
7.48% 5.16% 3.05% 1.63% 1.00% 0.55% 0.26%

Table 2.4 shows the global mean and standard deviation for all target pixels avail-

able for assessment at each window level individually. This assessment is conducted

where there is at least one contextual pixel available at the denoted window size for

comparison. As can be seen there is a global tendency to overestimate temperature

from the available contextual pixels, and there is little change in central tendency

once the window of examination grows beyond 11 × 11. The variation of the tem-

perature estimation rises with the increased distance of assessed pixels from the

centre, although the distance from the central pixel becomes less of an influence on

variation once the window of examination grows beyond 11 × 11. Global statistics

such as these hide some of the more interesting trends in the data, and Figure 2.4

shows the breakdown of mean and standard deviation by contextual pixel availabil-

ity at each window.

Figure 2.4a shows the mean value of the temperature difference as a function of

the valid context percentage available at the outer edge of each window, apart from

at the 5 × 5 window, where analysis includes all pixels inside this window. When
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Table 2.4: Mean and standard deviation of the contextual estimate differences from central

brightness temperature (AHI Band 7) for all available pixels in the 36 day set of full disk images

at 0500 UTC. A total of 76,023,810 pixels were examined over the 36 images used in the study.

window size 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

mean (K) 0.037 0.031 0.029 0.027 0.025 0.024
std (K) 1.522 2.039 2.200 2.320 2.415 2.494
count 76023810 75858159 75871580 75880469 75888096 75893762

window size 17 × 17 19 × 19 21 × 21 23 × 23 25 × 25
mean (K) 0.023 0.023 0.023 0.024 0.024
std (K) 2.562 2.622 2.677 2.726 2.771
count 75895983 75899037 75899238 75898553 75898041

all pixels are available for analysis at a particular window edge, the distance of the

examined pixels from the central pixel has no influence upon the resulting temper-

ature estimate, and the difference between estimates calculated using pixels from

each window edge stays similar down to 75% of available pixels. At this point, having

fewer pixels available in the 5 × 5 window of pixels causes a growth in temperature

overestimation, which reaches a maximum when half of adjacent pixels are unavail-

able.

Figure 2.4: (a) Mean brightness temperature difference between contextual estimates and the

central pixel for the ring of pixels at the edge of each window across the full disk for 0500 UTC

B07 AHI-8 images. (b) Standard deviation of contextual estimates derived from each window

edge by percentage of available pixels in the window edge.

Figure 2.4b shows the standard deviation of the temperature difference as a func-

tion of the percentage of contextual pixels available, similar to Figure 2.4a. For all

window sizes the standard deviation suffers a large increase once only one value is

obscured in a window, with this effect most marked at the larger window sizes. Vari-

ation peaks in a similar fashion to the mean at around half of all contextual pixels

21



2. Estimating Fire Background Temperature at a Geostationary Scale — An Evaluation of
Contextual Methods for AHI-8

available, with most window sizes seeing a levelling out of variation until only a

handful of contextual pixels remain for estimation. The relative indifference to dis-

tance from the central pixel for the larger window sizes is due to the way pixels here

are selected for analysis. The outer edge of the specified window is assessed, which

is square in shape, and the pixels at each outer edge exhibit a far greater range of

distances from the central pixel as one moves further out, which would smooth out

any purely distance-based variation.

The investigation into the effect of sensor zenith angle on temperature estima-

tion found no marked influence. Mean values in the 5 × 5 window for temperature

differences ranged from 0.07K in the 0° - 10° view angle region, down to 0.025K

near the edge of the disk between 70° - 80° zenith angle over the images analysed.

The largest errors were present in the two regions closest to nadir (0° - 10° and 10°

- 20°), but the land surface area in these regions is much smaller than further out

from the sensor nadir. There are no trends present due to sensor zenith angle in

the standard deviation of contextual estimation either, apart from a slight drop in

values close to nadir and at the 70° - 80° zenith angle.

2.3.2 Expanding Window Analysis

Table 2.5 demonstrates the breakdown of estimated pixel values when utilising an

expanded window algorithm. Firstly, the rate reported in the 1.00 column represents

the characteristics of pixels that have all contextual pixels available at the 5 × 5

window. These pixels, which make up 53.88% of all cloud-free pixels analysed, are

generally underestimated by contextual methods, albeit only by 0.03K, and display

low variance. The other columns in the 5 × 5 row report statistics on the pixels that

are added at each of the contextual percentage availabilities specified. For example,

if a process accepted estimates with 45% or more available contextual pixels, an

extra 40.28% of all target pixels would be available for evaluation, in addition to the

53.88% from the full context (1.00) pixels. The additional pixels accepted at each

valid context percentage have the means and standard deviations shown. For the

remaining pixels without a solution, the examined contextual window is expanded

through the window values shown, with statistics reported for pixels that achieve

the valid context percentage at each window size. After the process is exhausted

at the 25 × 25 window, the remaining pixels without a solution for each percentage

are tallied in the total failures row at the bottom of the table.

The tendency of a target pixel’s contextual surrounds to slightly underestimate

temperature in optimal conditions, as seen in Figure 2.4, is also seen here in the 5

× 5 section of Table 2.5. As the threshold for valid contextual pixels is lowered, the

mean temperature of all estimates rises and the variation in these estimates increase.

Of course these trade-offs in temperature accuracy come with an increased level
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Table 2.5: Mean and standard deviation of brightness temperature differences between the

central pixels and the contextual surrounds at each window level per percentage level. Num-

bers shown in the 5 × 5 window row report statistics for pixels that would be added to the

1.00 pixels if the valid context percentage shown was used to accept contextual estimates.

The percentage of total pixels with estimates available at the 5 × 5 window for each valid

context percentage is also shown. The rows for each subsequent window size describe the

number of temperature estimations that would be added from failures at the previous win-

dow size by expanding the examined window, and the subsequent means and variances of

pixels included from these window sizes. A total of 76,023,810 pixels were examined over

the 36 images used in the study.

Valid portion of total context pixels
window 1.00 0.99 - 0.75 0.99 - 0.65 0.99 - 0.55 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15

5 × 5 mean (K) -0.029 -0.083 -0.036 0.006 0.063 0.086 0.100 0.111
std (K) 1.090 1.603 1.699 1.759 1.839 1.867 1.885 1.898
count 40958274 18106490 24041100 27144999 30622724 32199899 33351687 34480202
% avail 53.88% 23.82% 31.62% 35.71% 40.28% 42.36% 43.87% 45.35%

Total 5x5 success 77.69% 85.50% 89.58% 94.16% 96.23% 97.75% 99.23%

7 × 7 mean (K) - 0.474 0.772 0.925 1.059 1.029 0.995 0.940
std (K) - 2.314 2.538 2.667 2.734 2.711 2.705 2.768
count N/A 1651297 948803 1096828 557910 562891 407382 160575
% avail N/A 2.17% 1.25% 1.44% 0.73% 0.74% 0.54% 0.21%

9 × 9 mean (K) - 0.704 1.007 1.143 1.293 1.270 1.193 1.143
std (K) - 2.592 2.778 2.874 2.932 2.908 2.914 2.999
count N/A 502591 369619 289271 182700 127933 134785 53782
% avail N/A 0.66% 0.49% 0.38% 0.24% 0.17% 0.18% 0.07%

11 × 11 mean (K) - 0.889 1.193 1.341 1.498 1.476 1.381 1.310
std (K) - 2.757 2.940 3.050 3.075 3.086 3.054 3.197
count N/A 320616 262912 221789 155173 118434 87380 36791
% avail N/A 0.42% 0.35% 0.29% 0.20% 0.16% 0.11% 0.05%

13 × 13 mean (K) - 1.024 1.321 1.491 1.615 1.611 1.521 1.471
std (K) - 2.860 3.055 3.161 3.200 3.228 3.221 3.348
count N/A 228249 199477 177211 130197 102158 63145 27398
% avail N/A 0.30% 0.26% 0.23% 0.17% 0.13% 0.08% 0.04%

15 × 15 mean (K) - 1.137 1.445 1.597 1.739 1.726 1.600 1.551
std (K) - 2.982 3.165 3.252 3.273 3.286 3.325 3.410
count N/A 174901 158520 121066 93067 63103 48553 21233
% avail N/A 0.23% 0.21% 0.16% 0.12% 0.08% 0.06% 0.03%

17 × 17 mean (K) - 1.224 1.585 1.702 1.830 1.804 1.765 1.626
std (K) - 3.032 3.283 3.333 3.371 3.436 3.437 3.449
count N/A 139247 108539 105588 70645 58638 38539 14115
% avail N/A 0.18% 0.14% 0.14% 0.09% 0.08% 0.05% 0.02%

19 × 19 mean (K) - 1.328 1.694 1.818 1.953 1.875 1.834 1.702
std (K) - 3.177 3.358 3.414 3.445 3.450 3.507 3.610
count N/A 113322 93057 79027 54876 46985 31733 12024
% avail N/A 0.15% 0.12% 0.10% 0.07% 0.06% 0.04% 0.02%

21 × 21 mean (K) - 1.416 1.747 1.867 2.046 2.020 1.885 1.805
std (K) - 3.265 3.380 3.471 3.556 3.573 3.595 3.866
count N/A 94179 81879 71265 51677 33939 27491 10239
% avail N/A 0.12% 0.11% 0.09% 0.07% 0.04% 0.04% 0.01%

23 × 23 mean (K) - 1.422 1.817 1.951 2.043 2.040 1.948 1.911
std (K) - 3.288 3.502 3.572 3.591 3.657 3.646 3.883
count N/A 80631 73046 63430 48480 36557 23016 9168
% avail N/A 0.11% 0.10% 0.08% 0.06% 0.05% 0.03% 0.01%

25 × 25 mean (K) - 1.547 1.877 2.025 2.079 2.110 1.988 2.024
std (K) - 3.342 3.548 3.549 3.575 3.661 3.556 3.886
count N/A 70008 64301 51988 40127 27803 20150 8127
% avail N/A 0.09% 0.08% 0.07% 0.05% 0.04% 0.03% 0.01%

Total failures 13584005 8664283 5643074 3057960 1687196 831675 231882
17.87% 11.40% 7.42% 4.02% 2.22% 1.09% 0.31%

of coverage — accepting 65% contextual pixel availability allows 85.5% of all target

pixels to be estimated with a neutral mean and relatively low variance. Conversely,

accepting pixels at 15% contextual availability would allow for the calculation of tem-
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perature estimates over 99.2% of all target pixels, but with both higher mean and

higher variance overall. Once the window of contextual pixels is expanded though,

the accuracies coming from the contextual estimate deteriorates. In general the

pixel’s context tends to overestimate temperatures by an increasing amount, with

mean temperature differences ranging between 0.47–2.11K, and the standard devi-

ation of results increases by around 50% by just moving from a 5 × 5 window to a

7 × 7 window of examination.

Figure 2.5: Breakdown of temperature estimation pass rate on pixels that have no solution in

their 5× 5 window. The percentage of pixels covered by each bar this figure as a portion of all

pixels examined is shown at the top of the figure. Each bar in the figure represents a minimum

percentage level of valid contextual pixels for temperature calculation, and each coloured

section represents the portion of pixels that are successful in deriving an estimate at each

window size. The balance of exhausted pixels with no solution at each assessed percentage

is also shown.

A further examination of calculation rates using the expanded window sizes is

shown in Figure 2.5. For the portion of pixels that have no solution at the 5 × 5 win-

dow for each percentage, this figure shows the rate that target pixels subsequently

obtain sufficient valid contextual pixels for calculation at each window size. The

portion of target pixels that does not achieve sufficient contextual pixel counts for

evaluation after expansion to the 25 × 25 window is shown in grey. As seen in
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Table 2.5, the higher contextual limitations have larger portions of the total data set

suffer from insufficient data for estimation. Changing the acceptance percentage

does not however affect the proportion of pixels that subsequently obtain sufficient

contextual pixels for estimation at larger window sizes. This figure shows that no

expanding window threshold will return values for more than 60.3% of the remain-

ing pixels that fail to be calculated at the 5 × 5 window size, with the 75% threshold

yielding less than 20% of extra pixels at larger windows. Of the pixels that do man-

age to obtain solutions, on average at least 69.5% of those occur at the 11 × 11 or

window or lower, and 83.4% occur at window sizes at or smaller than 15 × 15. This

rate of return for the expanding window method, coupled with the variability of res-

ults coming from estimations made at the larger window sizes, calls into question

the overall effectiveness of using such a method, especially considering the compu-

tationally intensive nature of using pixels from a wider area.

Often in the case of some of the LEO fire products, an absolute cutoff threshold

is used in order to calculate temperatures where a certain number of pixels are

available for the calculation, regardless of their distance from the central pixel. A

table demonstrating the effect of using a valid pixel threshold of 10 or more pixels is

shown in Table 2.6. This table does not show valid percentages above 45%, as pixels

that are only valid at these higher percentages trigger the absolute pixel threshold

at the 5 × 5 window. The 10 pixel threshold homogenises the 45%, 35% and 25%

classes to an extent, with very similar means and standard deviations emerging from

each window size. Setting an absolute threshold of valid pixels does increase the

total number of pixels that obtain temperature estimates, but even so there is still a

number of pixels that a solution is not possible for even at the lowest percentages. In

comparison to the figures presented in Table 2.5, the estimated means at the higher

window percentages using the absolute threshold are reduced, and the variation of

temperature estimates smooths out once the window expands beyond 9× 9. This is

due to more pixels in the original analysis expanding the window further than what

was required to provide reasonably accurate temperature estimation. The major

improvement from using an absolute pixel threshold is in the total percentage of

pixels that are assessable, with the first two window sizes able to provide estimates

in ≥ 98% of cases in all percentage classes.

2.3.3 Case Study Areas

Figures 2.6 and 2.7 show the spatial distribution in the mean of the temperature dif-

ferences at the 5× 5 window for each of the case study areas, along with a histogram

of the counts of these temperature differences per area. Each of the case study

areas display a unique distribution. South-east Australia (Figure 2.6a), Thailand (Fig-

ure 2.6d) and Japan (Figure 2.7b) show marked linear features which line up with
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Table 2.6: Mean and standard deviation of brightness temperature differences between the

central pixels and the contextual surrounds at each window level per percentage level, or

where number of context pixels reaches 10. The 5 × 5 window statistics show the global rates

for pixels which have equal or greater contextual pixels than theminimum for estimation. The

rows for each window size describe the number of calculated values that would be added by

expanding to each window size, and the subsequent means and variances of pixels included

from these window sizes.

Valid portion of total context pixels
window 1.00 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15

5 × 5 mean (K) -0.029 0.076 0.086 0.100 0.111
std (K) 1.090 1.856 1.867 1.885 1.898
count 40958274 31473186 32199899 33351687 34480202
% avail 53.88% 41.40% 42.36% 43.87% 45.35%

Total 5x5 success 95.27% 96.23% 97.75% 99.23%

7 × 7 mean (K) - 0.709 0.746 0.874 0.940
std (K) - 2.550 2.568 2.642 2.768
count N/A 2456495 1734495 664734 160575
% avail N/A 3.23% 2.28% 0.87% 0.21%

9 × 9 mean (K) - 0.623 0.628 0.703 0.996
std (K) - 2.639 2.640 2.673 2.928
count N/A 591757 589044 531807 97775
% avail N/A 0.78% 0.77% 0.70% 0.13%

11 × 11 mean (K) - 0.544 0.548 0.588 0.854
std (K) - 2.723 2.723 2.745 2.963
count N/A 225018 224240 212723 119473
% avail N/A 0.30% 0.29% 0.28% 0.16%

13 × 13 mean (K) - 0.485 0.487 0.518 0.701
std (K) - 2.789 2.792 2.816 2.971
count N/A 108023 107653 103138 66691
% avail N/A 0.14% 0.14% 0.14% 0.09%

15 × 15 mean (K) - 0.448 0.451 0.481 0.637
std (K) - 2.828 2.831 2.852 3.018
count N/A 60176 59952 57566 39017
% avail N/A 0.08% 0.08% 0.08% 0.05%

17 × 17 mean (K) - 0.413 0.414 0.435 0.584
std (K) - 2.844 2.845 2.869 3.019
count N/A 37688 37596 36118 24821
% avail N/A 0.05% 0.05% 0.05% 0.03%

19 × 19 mean (K) - 0.401 0.403 0.434 0.562
std (K) - 2.864 2.867 2.897 3.057
count N/A 25000 24899 23883 16827
% avail N/A 0.03% 0.03% 0.03% 0.02%

21 × 21 mean (K) - 0.439 0.441 0.464 0.607
std (K) - 2.996 3.000 3.031 3.226
count N/A 17483 17419 16712 12002
% avail N/A 0.02% 0.02% 0.02% 0.02%

23 × 23 mean (K) - 0.316 0.318 0.341 0.428
std (K) - 2.913 2.919 2.943 3.092
count N/A 12125 12068 11667 8478
% avail N/A 0.02% 0.02% 0.02% 0.01%

25 × 25 mean (K) - 0.304 0.306 0.324 0.415
std (K) - 2.869 2.874 2.897 2.998
count N/A 8910 8867 8596 6289
% avail N/A 0.01% 0.01% 0.01% 0.01%

Total failures 49675 49404 46905 33386
0.07% 0.06% 0.06% 0.04%
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boundaries of land use areas. South-eastern Australia area has the most variation in

the west where forested areas open to grazing and croplands, whilst Thailand and

Japan have greatest variation in line with changes in relief. The Japan case study

area has the most variation at the tree line high on Honshu’s central range. The

effect of coastline pixels is most evident in the Borneo area (Figure 2.6c), with the in-

fluence of swamp and mangrove along the coastline leading to an underestimation

of temperatures in adjacent pixels. Urban areas are also a source of underestima-

tion, most prevalent in the central China study area (Figure 2.7a) where cities in the

north west of the area display a heat island effect. This effect is also seen to a lesser

extent in the south-east Australia and Japan study areas. The Siberian (Figure 2.7c)

area displayed relative uniformity outside of the central latitudes, where unmelted

snow from mountain ranges caused commission errors in the cloud mask used,

which led to large estimation errors on these interfaces. North-western Australia

(Figure 2.6b) is characterised by high local variability, and high contrast between ve-

getated and bare earth areas coupled with the lack of surface moisture increases this

local variability (shown in greater detail in Figure 2.9). All distributions of temper-

ature differences are relatively uniform in nature, with the Japan, Siberia and Thai

areas displaying longer tails than other areas.

Table 2.7 depicts the global mean and standard deviations of the case study areas

compared to the outer edge of pixels at various window sizes. The general trend of

overestimation of pixel temperatures when looking at the global statistics is shown

here, but the change in mean values is different from area to area. Stability in the

mean temperatures here is a function of the amount of clear sky present during the

times examined — Thailand for instance has a comparatively small number of pixels

affected by cloud during the examined period, whereas Japan and Siberia are heavily

cloud affected during their examined time periods. North-western Australia shows

marked improvement in temperature recovery when looking at the more distant

window edges, which is seemingly due to poor performance at the 5× 5 window size.

All areas have a notable gain in the temperature variance as the pixels examined

become more distant from the central pixel.

Table 2.7: Mean and standard deviation of mean brightness temperature differences of each

case study area for each 31 day period. Pixel values were averaged over the 31 day period for

each site, and global means and standard deviations of these averages are reported.

Window edge 5 × 5 7 × 7 9 × 9 11 × 11

Case study area x̄ Mean x̄ SD x̄ Mean x̄ SD x̄ Mean x̄ SD x̄ Mean x̄ SD
sea 0.031 1.312 0.051 1.891 0.063 2.090 0.079 2.229
nwa 0.059 1.031 0.024 1.440 0.022 1.570 0.021 1.658
bor 0.089 0.856 0.089 1.231 0.097 1.360 0.101 1.454
thl 0.022 1.481 0.021 2.202 0.023 2.469 0.024 2.673
chn 0.023 0.942 0.024 1.348 0.020 1.494 0.014 1.605
jpn 0.092 1.928 0.140 2.862 0.162 3.259 0.178 3.553
sib 0.112 1.370 0.134 1.810 0.144 1.939 0.152 2.026
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Table 2.8: Mean and standard deviation of brightness temperature differences between the

central pixels and the contextual surrounds at the specified percentage levels for the 5 × 5

window in each case study area. Each column reports the statistics of accepting the available

pixels above the denoted percentage level. Pixels with full contextual coverage are reported

in the 1.00 column.

Valid portion of total context pixels
1.00 0.99 - 0.75 0.99 - 0.65 0.99 - 0.55 0.99 - 0.45 0.99 - 0.35 0.99 - 0.25 0.99 - 0.15 all

sea mean (K) -0.021 -0.042 -0.013 0.010 0.043 0.056 0.063 0.068 0.022
std (K) 1.670 1.832 1.862 1.880 1.921 1.931 1.935 1.941 1.804
count 279250 152220 210297 243132 284703 308590 330486 363534 688739
% avail 40.5% 22.1% 30.5% 35.3% 41.3% 44.8% 48.0% 52.8%

nwa mean (K) -0.051 -0.134 -0.035 0.034 0.127 0.171 0.198 0.218 0.061
std (K) 1.377 2.576 2.769 2.856 2.953 2.992 3.014 3.029 2.216
count 548125 258015 339147 382837 438487 470677 499270 538353 1129978
% avail 48.5% 22.8% 30.0% 33.9% 38.8% 41.7% 44.2% 47.6%

bor mean (K) -0.106 -0.096 -0.038 0.003 0.051 0.071 0.086 0.096 0.061
std (K) 1.121 1.472 1.585 1.651 1.719 1.746 1.764 1.777 1.681
count 90734 250567 343181 392122 451781 485259 515552 559085 702114
% avail 12.9% 35.7% 48.9% 55.8% 64.3% 69.1% 73.4% 79.6%

thl mean (K) -0.033 0.000 0.047 0.079 0.109 0.118 0.122 0.125 0.016
std (K) 1.679 1.874 1.920 1.941 1.961 1.965 1.967 1.970 1.776
count 683361 224582 281720 310807 346989 367880 386865 415359 1134791
% avail 60.2% 19.8% 24.8% 27.4% 30.6% 32.4% 34.1% 36.6%

chn mean (K) -0.032 -0.041 0.006 0.039 0.079 0.092 0.100 0.104 0.021
std (K) 1.159 1.310 1.345 1.370 1.407 1.418 1.424 1.428 1.272
count 428453 176040 232020 262412 301287 324324 346985 384005 868807
% avail 49.3% 20.3% 26.7% 30.2% 34.7% 37.3% 39.9% 44.2%

jpn mean (K) -0.019 -0.151 -0.134 -0.056 0.079 0.102 0.116 0.125 0.046
std (K) 2.061 2.246 2.269 2.332 2.460 2.479 2.486 2.490 2.265
count 120759 54546 74758 86968 103879 114110 124201 141136 288787
% avail 41.8% 18.9% 25.9% 30.1% 36.0% 39.5% 43.0% 48.9%

sib mean (K) -0.057 -0.073 -0.017 0.020 0.066 0.080 0.088 0.092 0.037
std (K) 1.120 1.746 1.814 1.859 1.947 1.969 1.980 1.996 1.745
count 86220 66918 97011 117111 149287 173672 202360 260949 478458
% avail 18.0% 14.0% 20.3% 24.5% 31.2% 36.3% 42.3% 54.5%

Table 2.8 reports statistics for each of the case study areas broken down by valid

contextual pixel percentage. As can be seen in all areas, pixels with all contextual

pixels available for calculation tend to underestimate the target temperature. An in-

creasing tendency to overestimate temperature as the amount of contextual pixels

available reduces is present at all sites. The stability of temperature estimation from

a pixel with no contextual obscuration is also much better than from areas that

are partially obscured. Some of the case study areas display a much larger variance

once contextual pixels become partially obscured - the north-western Australia area

is the median for variance during full availability, but is the worst performer once

the contextual area is even slightly obscured. The trend of greater overestimation

as obscuration of contextual pixels increases is caused by the target pixel temperat-

ure dropping due to cloud shadows causing lower solar reflectivity, in comparison

to clearer and brighter valid pixels in the surroundings. The expected deteriora-

tion of accuracy for each of the percentage windows is seen clearly, with standard

deviations increasing as more obscured estimations are accepted. The south-east

Australia, Thailand and China areas display less variation than other areas as the

percentage of valid contextual availability decreases. With regard to numbers of tar-

get pixel estimates available at each contextual percentage, these examples display
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a slight inflection in their trend around 45%, with numbers of estimates available

increasing in greater quantities below this percentage and at lesser quantities above.

Total recovery rates by percentage can be calculated by adding the percentage avail-

ability to the obscuration-free contextual (1.00) values.

Moving further away from the central pixel has the most marked effect on tem-

perature variation, and this effect can be seen in Figure 2.8. This figure depicts the

changes in the spatial and statistical distribution of contextual temperatures over

the south-eastern Australian study area, for window sizes between 5 × 5 pixels and

11 × 11 pixels. Expanding the window of examination for pixel estimation exacer-

bates the edge effects seen in the east and south-eastern portions of this area, with

much larger areas of high variation on the boundaries seen previously. The greater

window size also highlights the larger variations at the urban interfaces of Sydney

and the Illawarra region, and shows a general overestimation of temperatures along

the coastline. The distributions of temperatures remain normal, but are flattened

considerably compared to values from the most adjacent pixels.

2.4 Discussion

Whilst the numbers presented in Section 2.3.1 are specific to the AHI disk coverage

area, the same factors that restrict calculation of background temperature should be

common to any part of the globe where fire detection and attribution occurs. Cloud

coverage is a major inhibiting factor in any satellite fire detection setup, and areas

that display evenmoderate occlusion of the contextual surroundings tend to present

less than ideal estimations of temperature. From the range of values of contextual

availability shown in Figure 2.4a, there seems to be a break between results derived

from pixels with at least 65% contextual availability and results from pixels with less

contextual values available. Usage of estimates from target pixels with at least 65%

available contextual information minimises the bias in the mean calculation of back-

ground temperature, especially at the larger window sizes, whilst also limiting the

variation of the resultant estimations. The results presented in both Table 2.4 and

Figure 2.4 also demonstrate the relative stability of temperatures derived from win-

dow sizes larger than 13× 13, or in AHI scale once pixels are at least 12km from the

pixel being estimated. If an increase in variance of calculated estimates of 60% over

values derived at the 5 × 5 is acceptable for a specific purpose, then there is seem-

ingly no reason not to set the initial area of examination for contextual temperature

as large as practicable, but if this temperature variance is more of a concern, then

using pixels from outside even the 11× 11 window of pixels becomes problematic.

The effects at play when calculating contextual estimates as shown in Figure 2.4

bear further examination. The relative differences between the mean and variation
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seen at the higher window sizes reduces as the pixels examined increase in distance

from the target, an effect noted in Section 2.3.1 being due to variations in the win-

dow edge radius. Examination of the effect of using pixels with similar distances

to the target, in a circular ring, would most likely bear this out, though implement-

ation of such a distance-based window of examination would become less trivial as

sensor zenith angle increases. The pattern of mean difference as a function of valid

pixels is worth mentioning as well, especially with regard to overestimation of the

target temperature when valid contextual pixels approach 50%. This effect is likely

due to shadowing of the target pixel and consequent reduction in solar reflectivity,

with the target pixel most likely being immediately adjacent to the obscuration af-

fecting the surrounding pixels. This effect is lessened in the rings of pixels situated

further from the target pixel, as the source of obscuration at the outer edge of the

window is less likely to be present closer in to the target pixel. This overestimation

is not particularly large in magnitude, and is less likely to affect fire detection for in-

stance, but such informationmay assist in the adjustment of temperature-controlled

metrics calculated from these estimates.

The results also cast the use of expanding windows for contextual temperature

examination in a poor light, particularly for those sensors with larger spatial resol-

utions. The vast majority of all pixel calculations are achieved at the 5 × 5 window,

with the recovery of data from using an expanding window ranging from 20% to

54% of all remaining target pixels. If we are to use the 65% window as an example,

85% of data is contributed from the 5 × 5 window, extra estimates from using the

expanding window are just over 4%, and the majority of those extra estimates oc-

cur at or below the 11 × 11 window. There are also compromises involved in using

the estimates, with a general positive bias and much higher variation in values at

even the 7 × 7 level. Depending on the purpose of using these estimates, using the

data coming from the combined windows could be detrimental to overall reporting

accuracy. When evaluating how a background temperature method should be imple-

mented, care needs to be taken to ensure that any need for comprehensive cover-

age, whether it be achieved by either using a smaller percentage of valid contextual

pixels, by using larger window sizes, or both, does not inhibit the accuracy of the

overall product.

With regard to the case study areas selected for analysis, the reasons for major

variances in contextually determined temperature are as diverse as the case study

sites selected. Phenomena affecting contextual estimation range from highly ephem-

eral conditions, such as fire and flooding, to seasonally changing influences such as

snow and vegetation cover, to semi-permanent influences like urban-rural interfaces

and land cover change, and on to permanent conditions such as relief, tree lines

and coastlines. Each of these influencing factors need to be treated in a different

way dependent upon the expected temporal duration of phenomena. Whilst setting
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global thresholds is satisfactory for more holistic measures such as carbon emis-

sions and global FRP [73], in order to obtain more accurate estimates of pixel con-

trast, for metrics which require more accurate estimates of pixel temperature, use

of a contextual method may require application of a-priori information. Conversely,

a method that takes local variation into account by using such information needs

to take into account the changes caused by more short-term influences mentioned

here. This adds complexity to any system that uses fire background temperature in

a rapid fashion, such as in active fire response.

Whilst this study demonstrates the effectiveness of contextual estimation when

conditions are amenable, the deterioration of temperature estimation fidelity, and

in some cases total loss of recovery, leads to investigation of other methods that

may be able to bridge the gap in temperature retrieval. Investigation should be en-

couraged into the leveraging information from the temporal domain when looking

at this problem. Methods such as those used in [65, 83] & [31] look at the diurnal

temporal domain for temperature estimation, which is more suited to geostationary

sensors such as AHI and GOES. This does not preclude the use of temporal inform-

ation for LEO products though. An approach to integration of temporal modelling

of background temperature could look at adjustment of measurements by images

from previous time periods, with adjustments made for factors such as time of

image capture. Looking at many different time points would provide redundancy

against ephemeral conditions such as cloud, but looking too far back in time can

lead to information not being representative of the current state of the landscape.

A mix of ephemeral, seasonal and annual adjustments should be examined for their

effectiveness in correcting estimated values for LEO-based products.

With regard to the direct applicability of these results to products and values

from other sensors, caution should be exercised. The pixel sizes examined here

from the AHI-8 sensor are much larger than their equivalents from images taken

by low earth orbiting sensors. The rapid changes in landforms and land cover types

seen in the case study areasmay be smoothed or exacerbated by using smaller pixels,

and the overall granularity of spatial homogeneity at varying scales should be taken

into account when making comparisons across products and sensor scales. Sensor

dependent effects such as sensor point spread function have also not been examined

here, although these effects are mostly seen when dealing with high temperature

anomalies in the MWIR band, which the vast majority of target pixels in this study do

not encounter. The orbit of the sensor used in this study also grants the opportunity

to examine targets at the same local time over many images, and application of

methods used for analysis of LEO sensor information in a similar fashion would

need to take into account variations in the time of image capture for longitudinal

analysis purposes.

This study has assessed the overall ability to estimate background temperature
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from spatial context using AHI. In this study, temperature estimates from pixels

with all context pixels available show a standard deviation of 1.09K when examined

across the full disk. In comparison, the global standard deviations for the case

study areas were higher, ranging from 1.12K in Siberia to 2.06K in Japan. Whilst

accuracy of background temperature is less emphasised for metrics such as FRP, in-

formation obtained from this study could be used in an adjustment of these metrics

as calculated from AHI. Knowledge about the expected variation of medium-wave

infrared radiation estimation may also play a role in development of new fire detec-

tion techniques, which use the expected variation of MWIR radiation in an area to

identify anomalous values as a first-pass filter. Providing simpler and more concise

algorithms for fire detection reduces the data volumes and processing overhead re-

quired, leading to more rapid production and application of results.

2.5 Conclusions

An analysis of the effectiveness of contextual calculation of pixel background tem-

perature has been conducted for a 36 image set from Band 7 from the AHI-8 sensor.

Results show that estimates made from unobscured context pixels are very accurate,

with a slight negative bias and low variation of temperature differences. Accuracy

of the contextual method deteriorates with decreasing contextual pixel availability,

with 65% a good balancing point between increased bias and variation of calculated

values, and the overall availability of contextual data for estimation. Using a grow-

ing window for increasing the pixel availability by leveraging a larger window size

decreases the accuracy of estimation results, with much larger values of bias and

variation in resultant temperatures. Care needs to be taken with expanding window

methods in order to balance comprehensive coverage of image data against the ac-

curacy required from use of the results. A wide range of influences cause variation

in temperature estimation, with each of the case study areas examined providing

both unique problems for contextual estimation, and placing emphasis on the need

for knowing the conditions specific to an area in order to provide highly accurate

temperature estimation. Comprehensive coverage of all land areas is not achievable

using contextual estimation, and in most cases is not desirable due to the deterior-

ation of results as estimates use less optimal data. Alternative methods for tem-

perature estimation need to be explored in order to overcome the limitations of

contextual-based algorithms presented here, particularly when used with large res-

olution sensors such as AHI-8.
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2.6 Thesis Context

This chapter outlines the error analysis of the commonly used contextual bright-

ness temperature estimation method used by most of the common satellite-based

fire detection products. The work highlights the need to explore other methods for

brightness temperature estimation, especially in areas with high land cover variab-

ility. The next chapter provides the first exploratory examination of a method that

discards examining the pixel context in favour of providing a robust diurnal fitting

technique for temperature estimation.
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Figure 2.6: Mean difference between contextual estimates and the central pixel for the selected

period for each area. (a) south-eastern Australia (sea); (b) north-western Australia (nwa); (c)

Borneo (bor); and (d) central Thailand (thl).
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Figure 2.7: Mean difference between contextual estimates and the central pixel for the selected

period for each area. (a) eastern China (chn); (b) central Honshu (jpn); and (c) Siberia (sib).

35



2. Estimating Fire Background Temperature at a Geostationary Scale — An Evaluation of
Contextual Methods for AHI-8

Figure 2.8: Changes in spatial and statistical distribution of temperature estimates for the

south-eastern Australia (sea) study area by window size. Window levels shown are (a) 5 × 5

window; (b) 7 × 7 window; (c) 9 × 9 window; and (d) 11 × 11 window.
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Figure 2.9: Changes in spatial and statistical distribution of temperature estimates for the

north-western Australia (nwa) study area by window size. Window levels shown are (a) 5 × 5

window; (b) 7 × 7 window; (c) 9 × 9 window; and (d) 11 × 11 window.
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3.1 Introduction

Active fire in the landscape is a major catalyst for environmental change, poten-

tially resulting in large socio-economic impacts, including the high costs and risks

associated with mitigation efforts and the disruptive evacuation of communities[4].

Fire authorities and land managers are constantly seeking new techniques for the

early detection of fire to assist in the timely informing and evacuation of the public

from at-risk areas, the planning and prioritisation of asset management strategies,

and feasibility assessment of possible suppression efforts. This requirement for act-

ive fire detection in near real-time has seen the adoption of remote sensing from

satellite sensors as an objective means to quantify and characterise the location,

spread and intensity of fire events to support these important decisions [68]. The

information derived from this imagery can also be used in conjunction with other

data to provide models of an event, leading to more accurate understanding of the

potential impacts of an event before they occur.

Remote sensing for fire detection and attribution has predominantly focused on

imagery from low earth orbiting (LEO) sensors, which have significant advantages

with regard to spatial resolution, and therefore to the minimum size of fire that can

be detected. The trade-off with sensors of this type is that their orbital parameters

preclude rapidly repeated observations of a single location, and without a significant

investment in capital to provide for more missions, the ability to provide real-time

observations of fire from these sensors will be hampered by extensive revisit times.

The necessity for rapid fire detection sees the focus of fire detection shift to imagery

obtained from geostationary sensors, which provide an increased revisit rate at the

cost of a loss of fidelity in the spatial and radiometric realms [7]. Despite this, the

launch of new sensors such as the Japanese Meteorological Agency’s Advanced Hi-

mawai Imager (AHI) and the NOAA’s Advanced Baseline Imager (ABI) provide an en-

hanced opportunity to examine fire ignitions and evolution due to improved spatial,

radiometric and temporal resolutions compared to their geostationary predecessors.

One of the physical limitations of some techniques used for the remote sensing

of fire is determination of the background temperature of a pixel. Having an ac-

curate measure of this temperature is vital in order to be able to classify a target

pixel as containing a fire in the first place, along with being able to accurately es-

timate the area of the pixel containing fire and the intensity or radiative output of

the fire [68]. Background temperature tends to be a difficult value to determine ac-

curately because of the obscuring effects of the fire’s output, which outweighs the

background signal from a pixel in the medium wave infrared. Early efforts to cor-

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke, K., & Jones,
S. (2017). A Broad-Area Method for the Diurnal Characterisation of Upwelling Medium Wave Infrared
Radiation. Remote Sensing, 9(2), 167. https://doi.org/10.3390/rs9020167
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rect for this behaviour used a bi-spectral approach [11], which used the response

of thermal infrared bands in the same area to develop an estimate of fire charac-

teristics. Thermal infrared bands also display sensitivity to fire outputs but to a

much lesser extent and are generally used for false alarm detection, especially for

marginal detections from the medium wave infrared caused by solar reflection [34].

The difference between signal response in these two bands is the basis for most cur-

rent geostationary fire detection algorithms and similarly with the analysis of LEO

sensor data [68]. Issues with these algorithms start when looking at fires of smaller

extents. A study by [22] highlighted issues with fire retrievals using the bi-spectral

method, especially with regard to smaller fires and background temperature char-

acterisation. The study found that misattribution of the background temperature

by as little as 1K for fires that covered a portion of a pixel (p ≤ 0.0001) could pro-

duce errors in fire area attribution by a factor of 100 or more, with a less significant

error in temperature retrieval of > ±200K. This is of major concern for the use of

geostationary sensors for detection, as fires in their early stages make up far less a

proportion of a pixel from a geostationary sensor than is the case with a LEO sensor.

The most common method of deriving background temperature for a fire pixel is

through the use of brightness temperatures of pixels adjacent to the target pixel [68].

By identifying a number of pixels in the immediate area that are not affected by fire

or other occlusion such as smoke and cloud, an estimate can be found by aggrega-

tion of the brightness temperature of these pixels. The assumption is made that the

adjacent pixels used are of a similar nature in terms of reflectance and emissivity

to the target pixel. This background characterisation is then used in comparison

to the target pixel in order to identify whether the fire signal is different enough

from the background to constitute a fire return. Problems occur with this method

when the background temperature is misrepresented. In a study by [25] estimation

of the background temperature from adjacent pixels in approximately 22% of cases

produced a background temperature that was higher than the brightness temperat-

ure of the detected fire, based upon the surface variability of the area surrounding

the detection. This study also analysed the general performance of the MODIS bi-

spectral fire detection algorithm [20], and found that only 7% of the fire identified

by the product could be accurately characterised for fire temperature and area. With

the coarser spatial resolution of geostationary sensors, the authors noted that larger

potential errors will affect the retrieval of fires in comparison to LEO sensors when

using these methods.

A promising method for background temperature determination is through the

use of time series data from geostationary sensors. This time series data can be util-

ised based upon the premise that upwelling radiation can be predicted based upon

incident solar radiation, which varies chiefly by time of day, with some variation due

to weather effects and occlusion. Modelling of this Diurnal Temperature Cycle (DTC)
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has been approached using many different techniques. Earlier work on the model-

ling of the DTC looked to provide a parameter-based description based upon fitting

to discrete mathematical functions, such as the model proposed by [27]. This work

applied the modelled DTC estimate directly to measured brightness temperatures

using empirically derived parameters. This approach tended to be insensitive to

functional variation due to synoptic effects, and performed inadequately during the

period of rapid temperature change in the early morning. The work of [84] was the

first to utilise a set of prior observations as training data for a signal fitting process,

using the mean of previous observations as a state vector for a Kalman filter, which

due to the sensitivity of a mean-based estimate to outlying observations, application

was limited to cloud-free data only.

The influence of outliers on the training data used for signal fitting was addressed

in part by the study of [65], who looked at a selective process whereby previous

days DTCs were included in the training data of a pixel based upon the amount

of disturbance in the day’s observations, with a limit of six cloud or fire affected

observations out of a 96 image DTC permitted. These limits eliminated much of the

effects of outliers on the subsequent single value decomposition (SVD) used for the

initial fitting of background temperature. Issues occurred in areas where there were

insufficient anomaly-free days for a fitting to be performed, even with a sampling

size of the previous thirty days, in which case DTCs were selected from a library

of known anomaly-free DTCs from a similar area. The process was reliant on an

accurate cloud mask to determine which days were anomaly-free, and the training

data derivation was data intensive, with DTC vectors having to be extracted and

calculated for each individual pixel prior to fitting using the SVD process. These

issues lead to training data fragility, and introduced some of the issues that are

common error sources in contextual algorithms for fire detection.

In order to address the issues caused by sampling training data from a pixel-

based approach, this paper presents a new method for deriving training data based

upon a broad-area method. This method exploits similarities in incident solar radi-

ation found at similar latitudes to derive training data for a pixel. Geostationary

sensor data is aggregated by latitude and an area’s local solar time, and formed

into a time series based upon a sensor’s temporal resolution. This paper will com-

pare the results obtained using this method to training data derived from individual

pixels, such as in the study by [65], and with contextual methods of background

temperature determination, to compare the accuracy, efficiency and availability of

each method.
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3.2 Materials and Methods

3.2.1 Himawari AHI-8 Data

The Japanese Meteorological Agency (JMA) launched the Himawari-8 geostationary

satellite in October 2014, which replaced the MTSAT-2 sensor as the main source of

meteorological data for Australia. The sensor onboard the Himawari-8 satellite is

the Advanced Himawari Imager (AHI), a sensor capable of measuring 16 bands of

imagery, ranging from visible light through to thermal infrared. The radiometric

resolution of the sensor is significantly improved compared to previous iterations

of MT-SAT, with quantization of 11 bit in the visible and near infra-red and up to 14

bits for the MWIR Band 7, which is the band most heavily utilised for fire detection

purposes. The sensor boasts a spatial resolution of 2 × 2 km at nadir for infra-red

channels, with visible imagery available at resolutions as high as 0.5 × 0.5 km. Scan-

ning of the full disk generally takes place every ten minutes, with the area of Japan

and surroundings scanned every 150 seconds. The coverage area of images provided

by the sensor ranges from western India to Hawaii longitudinally, encompassing

much of China, Siberia, Japan, South East Asia, Indonesia and Australia. Character-

istics of AHI and MTSAT-2 for fire detection can be found in Table 3.1.

Table 3.1: Comparison of MTSAT-2 and AHI-8 sensors for fire detection using a MWIR (∼
4µm) channel.

Sensor MTSAT-2 AHI-8

Temporal Resolution 30 min 10 min

Spatial Resolution (nadir) 4 × 4 km 2 × 2 km

Medium wave infra-red channel saturation temperature 330 K 400 K

Quantisation (MWIR) 10 bit 14 bit

Noise equivalent delta temperature (NE∆T ) 0.09 @ 300 K ≤0.16 @ 300 K

The increase in image frequency from the AHI sensor in particular allows for

greater utilisation of time series data for temperature estimation, with gaps in the

data caused by station keeping, or sensor recording and processing issues having

less of an effect on derived values. Improvements in radiometric resolution allow

a greater range of measurements to be recorded, improving the fidelity of anomaly

detection, and a greater saturation temperature allows for the characteristics of lar-

ger fires to be determined. Preliminary work with this sensor in the fire detection

space [30, 88] has demonstrated the ability to detect and track fires using multiple

bands of imagery from this satellite sensor.

Inclusive of the housekeeping periods of the satellite, which occur twice daily,

142 full disk images are available from AHI per day. This study utilises image

products published by the Australian Bureau of Meteorology (ABOM), derived from
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raw AHI images by the process outlined in [37] for Band 7 brightness temperature

corrections from raw satellite imagery. The study also makes use of the clear sky

probability product, adapted by ABOM from the CLAVR-x cloud mask algorithm out-

lined in [35] with some minor alterations [54] for verification of cloudy periods in

the temporal data stream. Cloud product data for AHI is generally available at ten

minute intervals, which is similar to raw satellite images.

3.2.2 Training Data Derivation

Upwelling radiation in the medium wave infra-red consists of two main components:

reflection of solar radiation from the earth’s surface, and emission of blackbody

radiation from the surface due to temperature. The skin surface temperature of

the earth is influenced by a number of factors. Rain reduces upwelling radiation by

both lowering surface albedo, and reducing surface temperatures and consequently

emission. Convective cooling and heating due to air masses can influence surface

temperatures, and land cover composition can affect the magnitude of temperature

change. However, the most notable influence is heating by solar radiation. For any

area of land on a given day at a given latitude, the amount of incident solar radi-

ation should be similar barring obscuration. This should lead to a similar relative

diurnal response of upwelling radiation from the land surface at a given solar time

ts. By breaking the land surface into 0.25◦ × 0.25◦ blocks, we can use the rotation

of the earth to construct an amalgamated time series, with each block translating to

a separate minute of local solar time.

Images from the sensor have an ocean mask and a rudimentary cloud mask (all

pixels below 270K discarded) applied, and the remaining pixels in each block are

aggregated as amedian brightness temperature. This swath of blocks from a latitude

is assigned a time according to the UTC time of the image capture and the longitude

of the block as a function of its offset from the Greenwich meridian:

ts = UTCimage + longitude× 240(secs) (3.1)

Each line of the original image also has a scan line time associated with it, which

is the offset of the line capture relative to the nominal image time. This is important,

especially when comparing areas of relative spatial proximity that may be scanned

at different times in the image capture cycle. Blocks are assigned their own scan line

time according to the median scan time of the captured pixels from the original

image. Once this is added, each block’s apparent time is rounded to the nearest

minute and training data processing can commence.

An example of the variability in training data can be found in Figure 3.1, which is

a swath of land running half the width of the Australian continent at 26◦S latitude.
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Figure 3.1: Time series diagram for a swath of latitude 25.75◦S–26◦S from 135◦E–150◦E lon-

gitude on 2015 day 319 (15 November 2015). Each square represents the median temperat-

ure of the 0.25◦ block at the image time on the y-axis. These blocks represent one minute of

training data that can be fed into the brightness temperature aggregation process.

This swath demonstrates the diurnal variation of the daytime period of each block

as the image time advances. The timing of the peak temperature of the day advances

from right to left as the images progress, which should be the expected behaviour

as the Earth rotates. Most noticeable in this figure is the differing magnitude of

temperature changes in the most easterly three degrees of longitude. In this region

the land cover changes from the sparsely vegetated desert found in central Australia

to more vegetated cropping land interspersed with forest. This composition of land

cover displays far less upwelling radiation during the middle of the day than much

of the rest of the swath, necessitating the step of temperature standardisation for

each block to account for this reduced range of radiation values.

Figure 3.2 shows the relationship of the swath to local solar time as time passes.

Each of the grey lines on this graph represents median brightness temperatures rel-

ative to local solar time for each block. The coloured lines represent the temperature

trajectories of a selection of blocks from the swath. In an ideal situation these lines

would sit on top of one another, but variations in land cover and partial obscuration

of blocks by cloud, especially on the most easterly vector depicted in green, have

prevented it in this instance. Nonetheless, the daily maximums of the other tra-
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Figure 3.2: Figure 3.1 visualised relative to local solar time. Each of the swaths of block

values extracted from each image are shown as a grey line. The four coloured lines depict

the trajectory of individual block temperatures at 135◦E, 140◦E, 145◦E and 150◦E as the day

passes.

jectories occur almost at the same point, between 12:30 and 13:00 local time. One

characteristic this diagram demonstrates is the overlapping redundant information

available in the ten minute time series provided by the AHI sensor. Swaths of suffi-

cient width produce large amounts of redundant measurements at each local solar

time depending on the imaging frequency of the satellite sensor in question.

Both Figures 3.1 and 3.2 demonstrate a basic issue with this block aggregation

method, which is the variation of responses from the land surface in each block due

to factors such as differences in surface emissivity and reflection, and the influence

of cloud shadowing. In order tominimise the effects of this over the time series, each

of the blocks is standardised (mean µ = 0, standard deviation σ = 1) over a 24 hour

period and these standardised values are used in the signal generation process. The

data is then merged into one large time series and medians of the deviation from

the daily mean of each block are taken at each minute. This information is then fed

through a Butterworth low pass filter (fifth order, cutoff frequency three hours) to

smooth some of the minute-to-minute variation and provide an ideal temperature

curve for the day in question. The result of an example of this process is shown

as the red line in Figure 3.3. This filtered data subsequently forms the Broad Area

Training (BAT) data set for the fitting of a diurnal temperature curve to the target
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Figure 3.3: An example of the training data fitting process on a swath for a 24-h period. Grey

lines represent the raw median values for each swath from the time of each image, the blue

data points are representative of the median brightness temperature of the training data at

each local solar time, and the red trend line represents the filtered medians of the training

data. (Due to the nature of the filtering process, the lack of data at each end of the data results

in anomalous fitting and as such the swath sampling has been extended one hour either side

of the 24-h period to minimise these errors.)

pixel.

3.2.3 Fitting to Pixel Brightness Temperatures

This study makes use of the robust matching algorithm described in [65], which ad-

apted the SVD method described by [3] for its fitting method. In a similar fashion to

the training data set, each pixel brightness temperature value in the 24 hour period

to be modelled is categorised by local solar time. These times are rounded to the

nearest minute to more easily correspond with the training dataset. The time offset

between the first brightness temperature measurement of the pixel and the training

data is calculated, and the values are extracted from the training dataset corres-

ponding to the image times of the pixel dataset. This leaves the training dataset

consisting of a number of daily vectors that correspond directly to the times that

brightness temperatures were measured for the pixel’s DTC.

A SVD decomposes the training data matrix A into a number of principal com-

ponent vectors U which describe the training data as a series of orthogonal vectors,
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along with the diagonal matrix Σ which contains sorted decreasing eigenvalues for

each component and the matrix V which contains coefficients for the reconstruction

of the basis DTCs, as shown in Equation (3.2):

A = UΣV T (3.2)

Given the datasets involved with the brightness temperature fitting process used

in this paper, a significant number of the component vectors in U contribute little to

the DTC fitting process. An examination of the relationship between the maximum

variance in the training data and the DTC is given by the eigenvalues σi found in

Σ. To minimise the effect of overfitting caused by these extra degrees of freedom

in the component vectors, values of σi are tallied until the examined eigenvectors

account for at least 90% of the total variance of the SVD (per [64]), with subsequent

vectors discarded. This generally leads to a U matrix consisting of between two and

seven vectors for fitting in this study.

For a vector of observations from a pixel e, an approximation of the DTC e∗ can

be created from a reconstruction of the principal components:

e∗ =

K∑
i=1

ciUit (3.3)

where K is the number of basis vectors used and ci is a series of scalar values

derived by taking the inner product of the observations from the pixel and the prin-

cipal components (eTU ). ci essentially describes the contribution of each of the com-

ponent vectors in U to the fitted estimate of the DTC e∗.

At this point, the root mean square difference of the estimate of the DTC is com-

pared to the raw temperature measurements. If there is a sufficient fit between the

two at this point, the model answer is accepted without adjustment. If not, to min-

imise the effects of outliers on the robust determination of the DTC, a least squares

minimisation of Equation (3.3) occurs, utilising a robust error norm which identifies

outliers that contribute excessively to error:

σ(x, s) =
x2

s+ x2
(3.4)

x is the value of e − e∗ at time t, and s is a scale factor which can be reduced

iteratively to improve the solution given by the error minimisation. Care should be

taken when selecting suitable s values to ensure appropriate outlier elimination and
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that the model does not become unstable. This leads to the application of an outlier

mask m, such that:

mt =

1, |et − e∗t | ≥ σ/
√
3

0, otherwise
(3.5)

which leads to the minimisation of the error function E(c) as shown below:

E(c) =
N∑
t=1

mtρ((et − (
K∑
i=1

ciUit)), σ) (3.6)

In a set of randomly selected DTCs, the number of anomalies produced by cloud

far outweighs that of fire. In order to minimise the influence of sporadic clouds to

the temperature fitting process and keep the modelled curve closer to higher tem-

peratures that are more reflective of ground conditions, the weights of all negative

residuals are halved during the least squares minimisation process.

This process refines the values of ci applied to the principal components Ui in

order to reconstruct an approximate value for et. At this point, outliers from the

ideal DTC can be identified and attributed according to their characteristics–whether

they are positive or negative anomalies, and whether the change occurs suddenly or

gradually over time.

3.2.4 Algorithm Evaluation

3.2.4.1 Method Accuracy

In order to test the accuracy of brightness temperature modelling using BAT data, a

number of comparisons are made with currently used methods for deriving bright-

ness temperature. Focus will be placed upon the method described by [65], which

gathers training data vectors from the pixel’s recent history, ranging up to thirty

days prior to the time period being fitted. This method uses a rejection criteria

based upon the number of pixel returns in a 24-h set affected by cloud, with re-

jection of a daily vector based upon more than 6.25% of pixel returns in the period

being cloud-affected (six of the 96 images available). A pixel can be classed as able

to be modelled using this training data if at least ten days out of the previous thirty

are classified as successful and only successful vectors are utilised in the SVD fit-

ting process. A similar process is used to apply this method to pixel history in this

study, with a small alteration in the number of bad pixels causing a rejection. As

the AHI sensor takes a maximum of 142 images in a 24 hr period, a rejection of a

daily vector occurs when there are more than nine instances of clear sky probability

equal to zero in the corresponding AHI cloud mask data.
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For comparison, a temperature fitting has been applied to each sampled pixel

utilising BAT data derived from the previous thirty days and the previous ten days

prior to the fitting. These sampling points simulate the minimum and maximum

amount of training data available to the pixel-based fitting approach. Comparison is

also made to contextual based temperature derivation based upon a similar method

used for the MODIS fire products [41], with an expanding kernel based upon 25%

cloud and fire-free returns in the target vicinity, with a minimum of six successful

returns. In the case of the MODIS products, the kernel is allowed to grow to 21 ×
21 pixels in size before reaching a failed state. Due to the larger areas covered by

AHI pixels, the divergence of land cover and geology over these distances could be

extreme, so a limit of 5 × 5 pixels was proposed instead. For this evaluation, a set of

19,916 pixels were randomly selected over the Australian continent for the month

of November 2015, with fitting of the raw brightness temperature performed using

the four different methods noted above.

3.2.4.2 Method Efficiency

The nature of the BAT method lends itself to pre-processing–once a swath has pro-

cessed from a particular image time, the data is utilised in any fitting process on

any pixel in the swath for the encompassing period (either ten or thirty days in the

case of this study). For each image, an ocean mask and basic cloud mask (such

as described in Section 3.2.2) is applied before blocks are aggregated by median

temperature. This data is stored in files for later access in the block-based fitting

method.

For evaluation of the efficiency of both algorithms, the Python code for both

methods was written to take advantage of an initial common data gathering process

(location, start time, daily brightness temperature, available cloud). A random loca-

tion and time in Australia during the month of November 2015 was selected, with

the pixel-based training data calculated first. An extraction routine for training data

was run once the suitability of an individual day of data was assessed. This routine

would then check whether sufficient training periods for a pixel existed, and ran the

fitting routine in the event of success. The time taken for both successful and un-

successful routines using pixel-based training data was recorded.

Next, the BAT fitting was undertaken using thirty training days and ten training

days, utilising the pre-processed block data, with the processing time for each recor-

ded. Processing took place utilising code written for Python 2.7, using the Numpy

(v1.12) mathematical processing module and the built-in multiprocessing module,

along with the python-netCDF4 (v1.2.1) module for data reading and writing. The

computer used for processing utilises an Intel(R) Core(TM) i7-5820K CPU, allowing

12 threads of processing to take place at once on the six available cores. Images and
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pre-processed training data were stored on and accessed from an external hard disk

drive using USB-3 for data transfer.

3.2.4.3 Training Data Availability

In order to calculate the availability of pixel-based training data as per the [65]

method, we used the AHI cloudmask data to evaluate cloud cover at the time of each

image, with all values of clear sky probability greater than zero counting as clear sky.

The data was aggregated for each pixel for a 24 hour period corresponding with a

UTC day, and pixels with greater than 132 cloud-free returns judged to be suitable

for training purposes. Ten or more such successes within the thirty day period eval-

uated made the pixel suitable for pixel based training data collection. As the BAT

datasets rely on redundant measurements from adjacent blocks on the swath–with

a consequent reduction on reliance upon an individual block for training data–it was

difficult to provide a direct comparison case back to the pixel-derived data for eval-

uating availability. Absences in measurements from a specific block lead to reduc-

tions in the accuracy of the training data model for the at-large swath, but complete

loss of model performance only occurs where a significant length of an individual

swath is completely obscured by cloud for an extended period, which is unlikely out-

side of situations where the swath is very narrow. For a comparison in this case, we

used the availability of pixel training data on a per-pixel basis and the availability

of BAT data on a per-block basis for the months of October and November 2015 for

the Australian continent. The BAT availability figures in this case may be construed

as a minimum, and effective training data availability is generally much higher.

3.3 Results

3.3.1 Algorithm Accuracy

For comparison purposes between the pixel-based and BAT methods, we processed

solutions for a selection of 19,916 pixels with random locations on the Australian

continent with fitting times during the month of November 2015. Of this larger

selection, 5747 pixels (approximately 28.9%) had sufficient training data available

for use of pixel-based fitting.

Table 3.2 shows the relative accuracy of each of the temperature fitting processes

in comparison to the raw brightness temperatures recorded by the AHI sensor after

measurements flagged as cloud are eliminated. In clear sky conditions (≤ 10 cloud

instances) the pixel-based training method performed more accurately than the BAT

method for either ten or thirty days of training data, with differences of 0.30 and

0.15K respectively. This was expected, as the data derived from an individual pixel

will perform far better with regard to localised effects on pixels such as land cover
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Table 3.2: Comparison of fitting techniques to brightness temperatures recorded by the AHI

sensor using root mean square error after eliminating incidences of Clear Sky Probability (CSP)

of less than one from the evaluation.

Fitting technique RMS Error (K)

Incidences of CSP < 1 ≤ 10 11− 30 31− 50 51− 70 > 70

Pixel-based training 0.78 1.01 2.28 3.25 10.40

BAT (30 days) 0.94 0.94 1.11 1.48 4.19

BAT (10 days) 1.15 1.21 1.40 2.10 6.31

Contextual temperature 0.33 0.42 0.41 0.40 0.42

Number of samples 903 741 768 851 2345

Figure 3.4: Examples of model fitting using the four training data derivations. Figure (a) shows

a typical day with less than ten cloud instances, (b) shows a day with between 20–30 instances

of cloud, and (c) is typical of a day with more than 70 identified cloud periods.

composition. As the number of cloud instances increased, the pixel-based training

accuracy degraded, but the 30 day BAT method showed a steady relationship with

the cloud free brightness temperatures up to 30 cloud affected returns, with a more

gradual loss of accuracy on heavily cloud affected days. The 10 day BAT method

showed a similar performance dynamic, with an approximate 20% loss in accuracy

up to the point where accurate temperature determination became difficult (> 50

clouds).

The context-based temperature derivation appears to perform especially well re-

gardless of the number of outliers encountered in the temperature dataset. This is

mainly due to the spatial autocorrelation of cloud and weather effects, which see

contextual based temperatures closely track anomalous temperature as measured

in each pixel, rather than tracking the base model of upwelling radiation without an-

omaly. Comparison is also inhibited by the instance of a contextual temperature not

being available, which is more likely at times where anomalies would be detected.

Figure 3.4 demonstrates some examples of the fitting process over a few of the

random pixels selected. Figure 3.4a shows the typical performance of each temper-
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ature estimation technique on a clear sky day, with the fitted curves from the BAT

showing greatest variance from the raw temperatures during the night-time period

and at the peak of the day. The pixel based training data is better able to handle

tracking of brightness temperature during the daytime, but also shows some vari-

ance during the night to a lesser extent. Figure 3.4b shows an example of a day with

between 20 and 30 cloud instances. This figure shows the fitting curves from both

of the BAT datasets effectively ignoring the cloud induced anomalies in the early

evening (0900 UTC) and during the peak of the following day (0200 UTC). This is

in contrast to the pixel-based trained fitting, which follows the anomalies in the

early evening more closely and underestimates the rising temperatures in the morn-

ing period (2000–0000 UTC). This figure also demonstrates the spatial autocorrela-

tion issue with the contextually derived background temperatures. The contextual

fitting follows the cloud affected temperatures in the afternoon and early evening

period, ignoring the significance of the temperature peaks during this period which

are more indicative of the true background temperature.

Figure 3.4c shows an example with around 95 instances of non-clear sky condi-

tions. This example shows some of the fragility inherent in all of these methods

when a significant portion of the DTC is cloud obscured. Due to the standardisation

process that all pixels undertake before fitting of the training data is undertaken,

the large temperature drops caused by the evening clouds (0700–1100) skew the

normalisation by lowering the mean and increasing the standard deviation. This

issue sees both the pixel-based fitting and the BAT fittings underestimate the back-

ground temperature throughout the course of the day, with the largest variations in

the peak of the day and towards the end of the fitting in the early morning. This

also demonstrates one of the limitations with using a model with greater degrees

of freedom. Extra degrees of freedom are necessary in the case of sudden drops in

the background temperature caused by weather effects, but on days where bright-

ness temperatures do not follow the indicative shape of the DTC, the SVD fitting

process tends to produce curves that wander about with little relation to the true

background temperature.

3.3.2 Algorithm Efficiency

Table 3.3 shows the average time taken to perform the computations by each of the

temperature fitting methods from a processed pool of 19,916 target pixels. The time

taken to provide a temperature fitting based on BAT data for a thirty day period

is approximately one-tenth of the time taken to derive a similar fitting from the

pixel data. Part of the increase in speed comes from pre-processing of the pixel

training data, which takes approximately 15 minutes per day of images. The dif-

ference between the pixel-based and block-based methods coincide at around 170
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pixels evaluated, with the block-based method performing significantly faster bey-

ond this. The pre-processed blocks can also be used in calculations for training data

in adjacent time periods ±10 or 30 days from the start time of the original assess-

ment, speeding up subsequent processing further. The largest improvement in time

of processing between the two methods is with regard to acquiring data about the

state of cloud in the training data period, where evaluating the suitability of 24-h

periods using the cloud mask data makes up over 75% of the time taken to process

a solution using this method.

Table 3.3: Comparison of time taken to provide a temperature fitting using the pixel-based

training technique and the BAT fitting process.

Fitting Technique Time Taken (secs)

BAT Pre-processing 15 mins/day

BAT (30 days) 18.4

BAT (10 days) 7.3

Pixel-based Sampling cloud statistics 141.8

Training & fitting 35.5

Total time 177.2

The time taken to calculate a fitting from the 10 day BAT data is even shorter,

taking around 40% as long as the thirty day BAT method. A significant improvement

in processing time can be achieved for a small decrease in accuracy compared to the

fitting provided by the 30 day BAT data. This is of importance in situations where

processing time may be more critical than accuracy.

3.3.3 Training Data Availability

Training data blocks were derived for the entirety of the Australian continent for the

months of October and November 2015, from 4379 and 4245 AHI Band 7 images

respectively. Block method training data was deemed available when at least one

pixel brightness temperature in a 0.25◦ block was observed above 270 K. Using the

BAT method training data availability for the continent averaged 96.9% of all images

for October and 95.4% of all images for November. This compared to the pixel-based

method, which yielded 70.2% of data in October and 67.8% of data in November.

Given the assumption that a minimum of ten days of training data is sufficient to

derive a DTC, 91.4% of blocks demonstrate a sufficient number of clear days to

derive training data in October, and 81.8% in November. In comparison the pixel

based training method supplies sufficient days of training data to a pixel in 43.8%

of cases in October and 37% of cases in November. From an availability standpoint,

the block based method of training data derivation is a marked improvement over
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pixel-based methods, and a significant amount of redundant data on each line of

blocks extends this availability further.

Figure 3.5 shows the spatial distribution of training data availability over the

study area for October and November. The figure demonstrates the overall increase

in training data availability when using the BATmethod. Areas of limited availability

demonstrated similarity in spatial distribution between the twomethods, with south

eastern Australia and Tasmania in particular suffering from a lack (indeed in some

areas a total absence) of pixel-based training data for the evaluation period. In com-

parison, the majority of blocks retained availability for the required time during the

period, with some deterioration in coastal areas. The BAT method demonstrates a

significant improvement in temperature fitting ability, especially in the highly pop-

ulated coastal areas in the south and east of Australia.

3.4 Discussion

The advantages of using the BAT method for deriving training data for temperature

fitting include robustness against localised cloud, especially in areas with persistent

standing cloud such as coasts and mountainous areas; the ability to minimise the

number of training days required for deriving a brightness temperature fitting due

to the increased availability of training data; and a reduction in the storage of data

and processing time of training data for temperature fitting. Whilst in this study

the training data is used to feed an SVD fitting of the DTC, the data could easily be

applied to other fitting techniques, such as a random forest classifier or as a state

vector for Kalman filtering. The nature of the fitting process removes the need for

tracking locations that have standing hotspots, as the fitting process is completely

context independent, and eliminates errors that may be caused by large variations

in response to solar radiation and emission between adjacent pixels. As the broad

area method relies on as few as one cloud-free pixel per block from which to derive

a median temperature, the method is far more robust in response to occlusion than

the pixel-basedmethod. When banks of cloud associated with large weather systems

are present, a single block may be totally covered by cloud in one or several images.

However, the redundancy associated with evaluation on a continental scale means

that this lack of data has a minimal effect on the training data for the same time

period.

The quality of the training data used in the process relies on a couple of factors.

For example, the width of the longitudinal swath at any given latitude is affected

by the amount of ground available to sample that swath. In Australia, latitudes

between 25◦S–30◦S have the full width of the continent to sample temperatures from,

with anywhere up to 160 blocks of data per image. This provides a large amount
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Figure 3.5: Availability of training data from the block and pixel based methods. (a,b) show

the mean instances of training data available using the BAT method for October and Novem-

ber respectively; (c,d) show the training data available using the pixel method for the same

months.(e,f) demonstrate the number of 24-h periods that could be utilised as training data

for each block in October and November, and (g,h) show this same criteria using the pixel

based method.
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of redundancy in the training data, reducing the affect of outliers in the training

set. In contrast, a smaller swath width results in fewer blocks to formulate the

training data, with a greater risk of anomalous returns affecting the resultant fitting

processes. A smaller swath width also increases the influence of edge cases such

as coastlines, which tend to moderate land surface temperature variance if they are

not handled by an adequate ocean mask. A buffer of two pixels (between 3 and 6

km) was used to eliminate these edge cases for ocean boundaries, but water bodies

such as lakes and reservoirs may also contribute to erroneous training data if the

number of blocks used for training data is low. Discontinuous and inadequate areas

to derive training data from may prove a challenge, and evaluating the performance

of the BAT method in a region like Indonesia where cloud cover is high and land

areas are discontinuous would properly test the limits of the method.

Deriving training data using the BAT method is not without its issues. The

method involves the use of a median value for the entirety of a 0.25◦ × 0.25◦ block

without taking into account factors such as land cover, land use type, slope and as-

pect, and surface emissivity, all variables that can vary significantly between pixels

in a block. The application of the training data back to the pixel brightness temper-

ature using the SVD process also omits consideration of differing albedo between

adjacent pixels in a block. These issues may both be resolved by using a weight from

each pixel at different times of the day to take into account the differing emissivity

and reflection and how they affect the DTC of each location. The training dataset

also has a minimum cutoff temperature of 270 K to minimise the influence of cloud

affecting the training data in lieu of an operational cloud mask which may produce

large areas of missing data in places where surface temperature and reflection com-

ponents sit under this value for long periods of time. If a method such as this is used

to track surface upwelling radiation in areas that have sustained brightness tem-

peratures below 270 K, a cloud mask could be substituted in this case to eliminate

major outlying temperatures instead. The effect of snow on brightness temperature

tracking using this method has not been explored, mainly due to the study site and

time of year chosen.

Considering the evaluation of the various methods for accuracy of fitting, the

block-based training data based upon thirty previous days performed reasonably

well for fitting accuracy in comparison to the pixel-based training data for all anom-

aly classifications, and the results derived from the 10 day block training data were

of similar accuracy. If a threshold for suitability of fitting is placed on the results,

such as would be for a fire detection model, the 30 day block-based method is far

more robust with respect to anomalies and would continue tracking the expected

upwelling radiation with up to one quarter of the time series obscured. A full sensit-

ivity analysis using in-situ upwelling radiation data along with a verified cloud mask

would be of value to confirm the shape of the diurnal model in order to provide an
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independent confirmation of the method’s accuracy. Of note here is the apparently

extremely good performance of the contextual method for providing background

temperature, which is an unfortunate side effect of methods for evaluating the ac-

curacy of the model fitting process. The high spatial autocorrelation demonstrated

by upwelling radiation results in a contextual based temperature tracking extremely

closely to the raw temperature measurements regardless of whether the surrounds

themselves are affected by anomalies such as cloud, smoke or fire.

Whilst the accuracy of the fitting method used in this study for days of limited

thermal anomalies is quite good, the accuracy of fitting provided by the SVD process

breaks down once a large number of anomalies are encountered in the fitted data.

This behaviour, which manifests in the type of “wandering” curves displayed in Fig-

ure 3.4c, is caused in part by the standardisation process applied to pixel brightness

temperatures, where significant numbers of cloud incidences, especially from thick

cold clouds, can act to drop the mean and increase the standard deviation of tem-

peratures across the fitted period. This affects the initial estimation given from the

SVD process to the point where the outlier elimination process disregards correct

temperature measurements by mistake. One of the limitations of using the SVD

fitting method is that outlying measurements in the raw brightness temperatures

cannot be easily eliminated from the function evaluation. Whilst applying a more

rigorous cloud mask or deriving a standard model for brightness temperatures at a

given location and date could be ways of eliminating this mainly low temperature bi-

asing; investigation of other methods for applying the training data for temperature

fitting should be a priority.

Overall, the BAT method described in this paper performed adequately from an

accuracy standpoint, but the real benefits of the method lie in the improvements in

processing time and availability. The BAT method processed an individual fitting at

about ten times the speed of the pixel-based training data method, mostly due to

the lack of need for cloudmask evaluation of the training data vectors prior to fitting.

This issue with the pixel-based training method could be alleviated somewhat by

smaller file sizes, as the major issue with processing of the pixel training seems to

be the bulkiness of cloud data produced for this sensor (typical file sizes for the

AHI cloud product are approximately 90–100 MB). Given the ten day BAT method

performed similarly to the pixel-based training method for temperature accuracy,

using this data set instead of the thirty day block training set could be justified in

situations where processing time of large image sets is of greater importance than

extreme accuracy, especially when used for initial anomaly detection purposes.

From a fitting availability standpoint, the BAT method significantly increases the

distribution of areas that are able to have a temperature fitting applied to them. In

comparison to pixel-based methods, the increase of fitting availability is especially

marked in areas such as the east and south east coasts and the island of Tasmania.
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These areas are heavily populated in comparison to much of the Australian contin-

ent, and are at significant risk from rapidly changing events, such as fire and flood.

The extended utility and application of the BAT method will be of great interest to

land management authorities in these areas.

The BAT method formulated in this paper is designed specifically for the process

of providing data to inform fitting processes for positive thermal anomaly detection,

such as for fire detection. An enhanced understanding of background temperature

behaviour in the MWIR space could lead to improvements in the determination of

fire detection thresholds, potentially leading to delineation of fire thresholds using

time of day, latitude and solar aspect, along with a greater understanding of how the

mix of solar reflection and thermal emission in a pixel contributes to the minimum

detectable characteristics of a fire from a particular sensor. Applications of this

technique could also look to provide ongoing monitoring of fires using metrics such

as area, temperature and fire radiative power utilising the improved estimation of

this background temperature.

In addition to improvements in the fire detection space, this method could have

applications in a number of other fields that require change detection over a short

period of time. Likely applications could see aggregation of data based upon land

cover classification along with local solar time and latitude to provide a baseline for

mapping soil dryness changes, or for tracking the spread and severity of phenomena

such as flooding and volcanic activity from geostationary imagery.

3.5 Conclusions

This study demonstrates the formulation of a broad-area training data derivation

method for temperature fitting, for estimation of the background temperature of a

pixel measured by a geostationary sensor whilst obscured by cloud, smoke or fire.

In comparison to pixel-based methods of deriving training data for temperature fit-

ting, the BAT improves fitting resilience during periods of light to medium obscura-

tion, with fitting errors reduced by more than 50% on days with between 31 and 70

obscured instances using thirty days of training data. The BAT method also demon-

strates significant improvement in processing times compared to pixel-based train-

ing methods, especially when dealing with a large number of fittings over similar

timeframes. The use of the BAT method also increases the availability of training

data for fitting purposes, with fitting availability increasing to between 80% and 90%

for the time period covered by this study, compared to approximately 40% availabil-

ity from pixel-based methods. This improved availability of training data will assist

in tasks related to the accurate understanding of background upwelling radiation,

such as in fire detection and monitoring.
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3.6 Thesis Context

This chapter introduced the Broad Area Training method of diurnal fitting for bright-

ness temperature estimation. The work, which was a variant of a method implemen-

ted by [65], demonstrated comparisons in coverage and availability of estimations

in comparison to that method of diurnal fitting. The next chapter takes these model

fitting estimates of brightness temperature and applies them to a theoretical fire de-

tection implementation, with comparisons to other commonly used fire products.
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4.1 Introduction

Wildfires are a major catalyst for change in the environment, creating essential en-

vironmental disturbance to assist natural vegetation cycles, and disruptive change

with intense fires causing damage to both property and the environment [80]. With

the increased propensity towards more intense fires due to the increased drying of

fuels andmore extreme weather conditions [51], it is of vital importance to be able to

detect wildfires as early as possible, in order to drive potential mitigation strategies,

minimise the impact of fires on strategic assets in the built environment and maxim-

ise the time available to inform the public of impending fire activity. Using satellite

sensors for the detection of fire has proven an effective way of producing informa-

tion about the likelihood of active fire, along with providing metrics such as the size

and intensity of fire activity [68].

In order to obtain timely information about fire ignition, the use of geostationary

satellites to provide imagery takes primacy over low earth orbiting (LEO) active fire

(AF) products, such as those obtained from the Moderate Resolution Imaging Spec-

troradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS)

sensor systems [18]. Whilst the LEO sensors have advantages over geostationary

satellites, such as the reduced sensor instantaneous field-of-view (IFOV) from their

far lower orbits which makes smaller fires easier to detect, the LEO sensors are re-

stricted in their ability to provide rapid temporal updates of active fire information

due to the limited number of sensor views of a target area in a 24 hour period [45].

This limit to revisit time makes LEO fire products particularly vulnerable to errors

of omission when cloud covers an active fire during the sensor overpass, and when

the ephemeral nature of fire causes a drop in fire activity coincident with the image

time. These vulnerabilities in fire detection are offset by the use of geostationary

sensors, which can use their superior revisit time to sample fire activity during gaps

in cloud cover and smoke, and to capture the changing state of an active fire more

effectively [66]. Geostationary satellites to this point in time have been effective in

the detection of larger area fires, but have suffered frommajor omission errors when

fire sizes are small, due to the lower spatial and radiometric resolution of the geosta-

tionary sensors involved [45]. In order to capture fire ignition time more accurately,

a focus on improving the capability of detecting these smaller fires is required.

With the launch of new geostationary satellites, with sensors such as the Ad-

vanced Himawari Imager (AHI), the gap in active fire attribution capability between

geostationary sensors and the LEO sensors is decreasing [45]. The AHI sensor, launched

onboard the Himawari-8 satellite in 2014 by the Japan Meteorological Agency (JMA),

This chapter was published in a peer-reviewed journal as: Hally, B., Wallace, L., Reinke, K.,
Jones, S., & Skidmore, A. (2018). Advances in active fire detection using a multi-temporal method
for next-generation geostationary satellite data. International Journal of Digital Earth, 1–16. ht-
tps://doi.org/10.1080/17538947.2018.1497099
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provides enhanced capabilities for fire detection in comparison with previous geo-

stationary sensors, with 2km spatial resolution at nadir and an increased 14-bit

quantization in the sensor’s 3.9µm band 7 in comparison to previous sensors in

the area. These enhancements make the AHI sensor theoretically capable of de-

tecting far smaller fires, both in absolute size and in fire radiative power, and these

improvements have been demonstrated in initial studies based upon AHI data, such

as those undertaken in [94], [88] and [31]. The real advantage of using geostation-

ary sensors for fire detection is the increased temporal resolution in comparison to

LEO sensors. Whilst a satellite constellation such as MODIS may record up to four

images of a location per day, sensors such as the AHI are able to record at least 144

images a day over the full disk visible from the sensor location, with much higher

temporal resolution in AHI’s case over areas such as Japan. This higher revisit rate

of imagery enables opportunities not just to provide quasi real-time detection cap-

abilities, but also allows for us to gain a better understanding of the characteristic

nature of the earth’s reflectance and emittance in the all-important 4µm region of

the electromagnetic spectrum.

Of vital interest to any attempt to detect and quantify fire activity in a location is

an accurate estimation of the location’s background temperature in the absence of

fire. The difference in the background and elevated pixel temperature is the basis

of most hotspot algorithms, starting with the initial work on satellite fire detection

by [11], which lead to commonly used active fire products such as the MODIS fire

product [26] and the VIIRS active fire product [75] used at LEO scale, and the WF-

ABBA fire product [45] and the LSA SAF Meteosat products [89] which utilise geosta-

tionary data. These methods had their genesis in the evaluation of individual images

for fire activity – a necessary evil given the temporal gap between revisits using

LEO sensors – and looked to provide the background temperature of suspected fire

pixels from the context of the surrounding non-flaming area. This method of back-

ground temperature determination relies on accurate differentiation of cloud and

smoke-affected pixels from valid occlusion-free pixels, along with elimination of ad-

jacent fire-affected pixels and adjustments for a sensor’s point spread function. In

difficult detection conditions with large amounts of occlusion, the area required for

obtaining sufficient clear pixels to facilitate this estimation process expands signi-

ficantly. The sampled areas surrounding a target pixel may bear little resemblence

to the emissive and reflective properties of the central pixel, due to factors such as

landscape cover, relief and weather effects [20, 77]. Contextually derived temperat-

ure can also suffer from spatial autocorrelation issues, where the omission of thin

cloud or smoke reduces brightness temperatures across wider areas and reduces

the temperature contrast required to detect thermal anomalies in the first instance.

These issues with contextual determination are exacerbated by the sensitivity of

fire algorithms to accurately determined background temperature. [25] highlighted
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some of the difficulties with contextual temperature determination methods, includ-

ing the estimate of background temperature from the surrounding context being

higher than the target pixel’s flaming temperature, which occurred in 22% of cases

with the MODIS fire product between 2003-2012. Issues also arise when the detected

fire temperature is marginally above the estimated background temperature, with

attribution errors in background temperature of 1K causing errors in the estimated

fire area of a factor of 100 [25], though these types of errors are less likely to affect

initial fire detection.

These issues with applying contextual temperature derivations in dificult condi-

tions have led to investigation of the estimation of background temperature using

temporal-based methods, which focus upon the estimation of background temper-

ature over a time period leading up to pixel ignition. This estimation, based upon

the diurnal variation of a pixel’s temperature, attempts to leverage the higher tem-

poral resolution of sensors to provide an accurate background temperature, based

upon the expected behaviour of the pixel when no anomaly occurs. Initial work eval-

uated the use of absolute descriptive models [27, 38] and Reproducing Kernel Hil-

bert Space models [83], which both suffered from the inability of the model to allow

for adjustments due to emissivity change, for instance after rainfall. Kalman filter-

ing methods for temperature estimation were first utilised by [85] and were refined

by [65], and these generally provided good results for fitting the diurnal temperat-

ure cycle whilst accounting for gaps and anomalous data in the pixel record. The

work by [65] in particular showed promise for obtaining more accurate background

temperature data, and this method utilises training data from the target pixel for a

30-day period prior to the day being modelled. Training data derived in this way for

temperature fitting is vulnerable to gaps in the data – in areas of persistent stand-

ing cloud or periodic obscuration, sufficient training data for a pixel fitting may not

be obtainable, and in this case estimates are provided by pixels from an anomaly-

free library of pixels. [31] investigated this method and found that at in Australia

only approximately 40% of pixels had sufficient training data available to utilise the

pixel-based training data method. This study also found significant impediments in

the form of processing time required to produce fittings, which was also mentioned

in the original study by [65].

Recent work in the field of background temperature estimation has investigated

the use of a broad-area time-series approach for deriving training data for temperat-

ure fitting, as described in [31]. Raw image data from the AHI-8 sensor was aggreg-

ated based upon median temperature values of the land surface at 0.25° by 0.25°

intervals for a period of 30 days prior to the fitting start time. This dataset was

then aggregated by local solar time and medians were again taken in order to create

an idealised diurnal temperature cycle for a strip of latitude at one minute inter-

vals. This model was then sub–sampled for the corresponding values at the times
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where brightness temperature was available for the location in question. A fitting

process was then applied in order to provide an optimised background temperature,

based upon the training data and the brightness temperature data available from the

location for the corresponding 24 hour period. This method produced similar or

improved accuracy of background temperature determination when compared to

pixel-based methods such as those in [65], with a significant increase in training

data availability over all areas examined.

The increased availability and accuracy of the background temperature determ-

ination method described by [31] provides a starting point for a fire detection al-

gorithm. The robustness of the model suggests that the periods of negative tem-

perature anomalies such as cloud and smoke, and positive temperature anomalies

such as fire activity, have a reduced effect on the subsequent fitted temperatures

in comparison to the ideal diurnal temperature cycle that should be demonstrated

by the pixels being examined. This paper proposes the use of this fitting technique

with a series of temperature thresholds for thermal anomaly attribution, with a view

to examine the abilities and limitations of the temperature fitting method with re-

gard to fire detection. The paper will examine the performance of this threshold

algorithm against commonly used LEO products such as the VIIRS and MODIS act-

ive fire products, in order to determine the completeness of anomaly capture of the

various methods, and also to examine the capability of the AHI sensor to detect fire

in its early stages and give an estimate of the expected improvements in fire detec-

tion times using this method.

4.2 Data

4.2.1 Sensor data

Geostationary satellite sensor information for this study was obtained from Japan

Meteorological Agency via the Australian Bureau of Meteorology (ABOM). The study

makes use of Band 7 (3.9µm wavelength) images from the AHI-8 sensor for the

month of August 2016, which were corrected both radiometrically and geograph-

ically according to the procedures outlined in [60]. Data for the month was pre-

processed according to the method described in [30] in order to provide training

data for the temperature fitting process. To determine the availability of cloud-free

pixels for false attribution evaluation, a clear sky probability product based upon

the CLAVR-x cloud mask algorithm [35] with some minor alterations [54] was used.

The study considers two commonly used active fire products from low earth

orbiting sensors; the MODIS Collection 6 (MOD/MYD14) 1km active fire product as

outlined in [26], and the VIIRS 375m (VNP14IMG) active fire product as described in

[75], making use in both cases of the geographic position of the detected hotspots
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and the time of satellite overpass. Both of these products show low commission

rates for fire activity in areas with similar geographic and land cover characteristics,

especially with the larger fires this study area tends to produce. In addition, to

determine the extent of the study area affected by fire and to provide a method

against which to explore fire disturbance, a MODIS burned area 0.0025◦ product

[53], produced by the TERN Auscover project, was used. This dataset describes

the area affected by fire and attributes areas with the date and time of the first

recorded disturbance in the month in question. This product is used for this study

primarily because of its effectiveness at accurately describing fire-induced change

in geographic regions similar to those used in this study [53].

4.2.2 Study Area

The area selected for the study is a section of north western Australia bounded

between 15°S and 20°S in latitude, and 125°E and 130°E longitude as shown in Figure

4.1, during the month of August 2016. The area is predominantly comprised of sa-

vanna woodland, tending to drier hummock grass conditions in the southern portion

[71]. The time of year selected corresponds to Mid Dry Season type fire behaviour

[12], with a high number of fires and larger fires able to take hold due to reduced

fuel moisture and humidity. The low prevalence of cloud cover in the area compared

to other periods of the year provides ideal conditions for any fire detection meth-

ods used. This lack of obscuration, coupled with the remoteness of examined fire

activity from population centres, which mean that fires continue to spread naturally

after initial detection, allows for an ideal test-bed for comparison between various

fire products. The study area itself comprises of 64,374 unique AHI-8 pixels cover-

ing approximately 295,000km2.

4.3 Method

4.3.1 Broad Area Training method

This study utilises previous work conducted upon the AHI sensor in the application

of a multi-temporal method of background temperature estimation, known as the

Broad Area Training (BAT) method [31]. This method involves a two-step process for

geostationary data - a preprocessing step, where AHI Band 7 images are aggregated

based upon the cloud-free median of data at the 0.25° by 0.25° spatial scale; and

then a fitting step, where this spatially aggregated data is stacked temporally using

local solar time, and a standardised diurnal model is produced at 0.25° by 0.25° scale

for use in individual pixel fitting using a single value decomposition (SVD) process.

These fittings at pixel level can then be compared to the raw brightness temperature
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Figure 4.1: Diagram showing the location of the selected study area in northWestern Australia,

along with the areas affected by fire between 1st - 28th of August 2016 as determined by the

MODIS burned area product [53].

data as measured by the satellite sensor, to identify thermal anomalies such as those

caused by active fire.

4.3.2 Fire Detection and Threshold Selection

In order to isolate positive thermal anomalies, basic thresholds above the temper-

ature estimate of a location are used. Taking into account the relatively young age

of the AHI sensor and the minimal existing published work on its fire detection cap-

abilities [59, 94], the nature of the sensor’s response to fire is largely unassessed.

The findings of [31] describing the error involved in fitting temperatures to clear-

sky scenarios, and results from [66] using the SEVIRI sensor, provide a potential

starting point. These studies suggest a lower bound of 2K as a starting point for

threshold examination, with a higher bound of 5K based upon an assessment of the

response of known fires in comparison to low earth orbiting active fire products,

with supplementary values selected in between at integer level. Whilst by no means

being a comprehensive set of values for evaluation, the range of thresholds evalu-
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ated seeks to gain an understanding of the relationship between the commission

and omission error associated with using a thresholding method of this type.

4.3.3 Anomaly Detection Rate Evaluation

To evaluate the validity of using assorted thresholds for thermal anomaly detection,

an analysis of the difference between recorded and modelled temperatures was con-

ducted for a 28 day period (2016, Julian days 214 – 241) during August 2016 over

the study area (see Figure 4.1). The study area was broken into 400 blocks, each 0.25°

x 0.25° in size, which typically comprise of between 150 – 170 AHI pixels in this

part of the full disk. Blocks were then selected at random and coupled with a date

and time selected from the study period. Dates of analysis for each block were ran-

domised, whilst the hour at which fitting commenced was divided evenly between

samples, to minimise the effect of time of day on fitting accuracy evaluation. From

the 400 blocks and 672 unique starting times (24 hours x 28 days) available, a total

of 960 block samples were selected for evaluation. Training data for the pixels in

each block was derived using the BAT method, and temperature fitting was per-

formed on the brightness temperature data for all pixels in the block using a single

value decomposition method.

In order to ensure that the effect of cloud on the temperature fitting was minim-

ised for the set of results used for threshold determination, the clear sky product

described in Section 4.2.1 was evaluated for pixels to be fitted. Pixel diurnal vectors

were discarded when less than 133 instances of clear sky occurred in the day ex-

amined from the 142 daily images. As the experimental AHI clear sky product used

had significant issues with false attribution of cloud cover during the night, a tem-

poral mask was applied to its use. The clear sky product was used for cloud cover

determination during daylight hours (approx. 2300 – 1000 UTC in this case), whilst

at night cloud cover was flagged by use of a rudimentary mask of brightness tem-

perature less than 280K. Once a specific pixel diurnal vector has passed the cloud

requirement, the differences between the modelled and the measured brightness

temperatures were recorded for analysis.

As a further analysis to determine the rate of detections associated with actual

fire activity, the AHI fitting dataset was also compared to burned area detections

from the MODIS burned area product [53] for location and time. If an AHI detection

was observed, the burned area product was checked for a recording for a period of

48h either side of the AHI detection, and active fire was attributed as the cause of

the detection if this criteria was met. This large evaluation window was selected to

ensure that fire-induced detections were not missed due to cloud cover blocking one

or more of the daytime imaging passes of the MODIS satellite.
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4.3.4 Active Fire Product Intercomparison

The MODIS burned area product described by [53] was used to determine instances

of fire-induced change in the study area. The positional information in this dataset

was converted to AHI image coordinates, and any duplicate returns in both location

and time were eliminated. Once these locations were identified, a similar analysis

of the MODIS and VIIRS active fire products was undertaken. Hotspots identified by

each of the products had their image time and equivalent AHI locations recorded.

Incidences where active fire products recorded a hotspot detection in the AHI pixel

area in the 23 hours preceding the burned area disturbance were noted. This led to

the evaluation of four intercomparison types – (1) fires which were recorded by the

burned area product, but not by either of the active fire products; (2) fires which

were detected by the VIIRS active fire product and the burned area product, but not

by the MODIS active fire product; (3) fires that were identified by the MODIS active

fire product and the burned area product, but not by VIIRS; and (4) fires discovered

by all three of the LEO products used.

From these intercomparison classes, a random sample of 150 incidents were se-

lected for further analysis. For each of the selected instances, a temperature fitting

window was selected based upon the time of the MODIS burned area product. The

temporal window for the diurnal fitting of pixel background temperature was fixed

beginning 23h prior to the detection of change from the burned area product (Fig-

ure 4.2), in order to maximise the temporal coverage of fitting prior to the burned

area detection. Training data for each of the pixel fittings was derived using the BAT

method [31], and temperature fittings applied to each of the raw brightness tem-

perature sets using a single value decomposition method. The thresholds described

in Section 4.3.2 were then applied to the difference between the fitted background

temperature and the recorded brightness temperature, and instances where these

thresholds are exceeded are recorded with the time of AHI detection noted. Suc-

cess of the threshold detection algorithm was considered as at least one anomaly

being detected during the 24 hour period of fitting, with synchronous detections be-

ing classified as instances where an AHI anomaly occurs within 20 minutes of any

active fire product detection in the pixel in question.

4.3.5 Determination of Fire Ignition Time

The time required for fire activity to grow from ignition to being visible via remote

sensing in the study area is minimal, given the general lack of tree cover in the

landscape, fuel moisture and weather conditions [80], and the theoretical minimum

sampling size of the sensors [75]. With fires growing to dimensions visible from

geostationary sensors in minutes, the sporadic temporal nature of LEO image cap-

ture means a significant portion of fires manifest on geostationary imagery prior
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Figure 4.2: An example illustrating the shifted temporal window described in Section 4.3.5 in

operation. In this instance, a significant portion of the original fitting window, which is the

time period to the right of the grey vertical line, is affected by active fire in the pixel, and this

results in a higher fitted background temperature than expected during the period between

2016-218 09:00 and 2016-218 18:00, as shown by the line in dark green. By moving the

start of the fitting earlier, based upon detection by the VIIRS active fire product in this case,

the fitting process is less affected by the elevated temperatures associated with the ongoing

fire. This produces a fitting such as that shown by the light green line, leading to fire-related

anomalies being identified earlier, dependent upon the threshold set.

to detection via LEO algorithms. As highlighted by [31], the accuracy of the SVD

temperature fitting method decreases as the number of temperature anomalies in-

creases. This poses a problemwith regard to the use of a low earth orbiting detection

product such as the MODIS fire product as a reference data set - if the point in time

at which the target anomaly can be detected by the geostationary sensor precedes

the LEO sensor overpass by a significant amount of time, the subsequent temperat-

ure fitting of the geostationary pixel data will be skewed by this period of artificially

elevated temperatures, resulting in an over-estimation of the background temperat-

ure over the 24 hour fitting period. Depending on the size of the initially detectable

fire, this could lead to errors in the estimation of the initial ignition time, and could

also lead to a pixel being misattributed as non-fire during flaming periods if the di-

urnal signal is sufficiently disturbed.

In order to mitigate the effects of ongoing fire activity on the background tem-

perature estimation process, an adjusted temporal window for the temperature fit-

ting is applied. Initially, the time of the first detection by a low earth orbiting detec-

tion algorithm within the original period (23h prior to the burned area detection) is

noted, and compared to the recorded instances of fire detection from the threshold
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algorithm. If the first active fire detection from the threshold algorithm is within

two hours of this first LEO active fire detection, the time of the detection by the LEO

product is fixed as the seed for the new temporal window, which starts the temperat-

ure fitting process for the target pixel 22 hours prior to this resolved first detection.

In instances where the threshold algorithm detects fire more than 2 hours prior to a

LEO fire product detection, the time of the first detection of the AHI product seeds

the temporal window time instead. Despite the change in fitting start times, the

same 24 hour window is evaluated for fire detection as in Section 4.3.4, with any

change in the initial time of AHI detection recorded.

4.4 Results

4.4.1 Threshold Selection and Anomaly Detection Rates

Using the selection method for clear sky pixels as described in Section 4.3.4, a

total of 93,906 unique locations and starting times were identified as suitable for

analysis, which corresponded to approximately 63% of the pixels selected initially.

Table 4.1 displays the rates of detection of individual thermal anomalies each of the

thresholds selected, where an anomaly detection is defined as at least one bright-

ness temperature being more than the threshold above the temperature fitting for

the 24h period fitted. The thresholding algorithm displays a very high number of

anomaly detections at 2K, with a low number of these being related to detected fire

activity. As the threshold is increased, detection rates drop but the number of de-

tections associated with burned area instances increases, to a point where at 5K non-

burned-area thresholding detections occur in less than 0.1% of all sampled pixels.

The commission rate of the anomaly detection relative to burned area product de-

tections remains relatively high at all thresholds, with the lowest rate of 23.4% at 5K.

Table 4.1: Raw anomaly rates for the threshold algorithm for the selected temperature

thresholds, and the proportion of these anomalies which have an associated disturbance de-

tected by the MODIS burned area product, from a total selection of 93,906 cloud-free diurnal

fittings.

Threshold (K)
AHI fittings with Anomalous fittings with

positive anomalies identified associated MODIS burned area

2K 12.17% 7.9%
3K 2.22% 22.0%
4K 0.64% 53.7%
5K 0.37% 76.6%
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4.4.2 Active Fire Product Intercomparison

The selection process outlined in Section 4.3.3 identified 7625 separate instances of

possible fire-induced disturbance across 2765 unique AHI pixels during the period

of the study. The larger number of total fire incidences compared to AHI pixels

affected is explained by the spatial disparity of the datasets used – the burned area

product is of a far higher spatial resolution than the AHI imagery, so a number of

separate incidents may occur in one AHI pixel area over the period of the study.

Table 4.2 shows the rates of detection for the four fire incident groups as described

in Section 4.3.4. Of note is the effect of the spatial resolution of the various sensors

on the rate of complementary detection. Notwithstanding fires that have not been

detected by the LEO active fire products, the type of classification roughly correlates

with fire size – events that are detected by the VIIRS 375m product only are identified

by AHI at a lesser rate than those found by the MODIS active fire product only,

and both of these have lower detection rates than when both active fire products

are triggered. Despite the spatial resolution disparity between the VIIRS active fire

product and the AHI Band 7 images, the threshold algorithm is capable of detecting

fire in these areas in over 75% of cases when using the largest of the four thresholds

evaluated.

Table 4.2: Detection results of the thresholding algorithm on 150 fire incidents in each detec-

tion grouping per temperature threshold. Detections occur where at least one brightness tem-

perature measurement exceeds the fitted brightness temperature by the selected threshold.

Synchronous fire detections are classified as where an anomaly detected by one or both of the

active fire products has at least one corresponding detection from the threshold algorithm

within twenty minutes of the LEO detection.

Group\Threshold 2K 3K 4K 5K
n=150 for all Detected Synchronous Detected Synchronous Detected Synchronous Detected Synchronous

Burned area only 75.3% N/A 63.3% N/A 56.0% N/A 50.0% N/A
VIIRS AF only 95.3% 38.7% 88.0% 27.3% 84.7% 22.0% 77.3% 17.3%
MODIS AF only 97.3% 60.7% 97.0% 58.0% 91.3% 52.7% 86.0% 48.0%
Both AF products 99.3% 68.0% 98.3% 58.7% 92.0% 51.3% 89.3% 46.0%

Importantly, the threshold algorithm is detecting positive anomalies in pixels

that have identified as being burned, but no LEO active fire product detection. In

50% of cases the 5K threshold is able to identify a fire in a pixel where both of the

LEO active fire products used here have failed, with higher attribution rates for the

smaller thresholds.

4.4.3 Time of Initial Detection

Table 4.3 shows statistics concerning the detection rates of each threshold for the in-

cident classes examined for the forward-shifted temporal window (Figure 4.3), along

with the average times of the AHI fire detection before a low earth orbit detection.

These mean time differences are shown both for detections from fittings with the
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Table 4.3: Time of detection of fires using the threshold algorithm in comparison to times of

first detection using the two LEO active fire products at each temperature threshold. Times

shown are the average time of detection prior to LEO active fire detection, with numbers

shown for both the diurnal temporal window commencing 23h prior to burned area detection,

and for the shifted temporal window commencing 22h before initial active fire detection.

Times shown are in hours and minutes.

VIIRS Detection only (n=150) 2K 3K 4K 5K

Original detection rate 95.3% 88.0% 84.7% 77.3%
Shifted detection rate 95.3% 88.0% 85.3% 76.0%
Mean detection time before first

4h 48m 2h 41m 2h 07m 1h 55m
LEO AF with original window
Mean detection time before first

6h 47m 6h 08m 6h 06m 5h 43m
LEO AF with shifted window

MODIS Detection only (n=150) 2K 3K 4K 5K

Original detection rate 97.3% 94.0% 91.3% 86.0%
Shifted detection rate 91.3% 84.0% 82.0% 82.7%
Mean detection time before first

8h 06m 6h 28m 5h 42m 4h 49m
LEO AF with original window
Mean detection time before first

9h 36m 7h 34m 6h 34m 5h 39m
LEO AF with shifted window

Both AF Detected (n=150) 2K 3K 4K 5K

Original detection rate 99.3% 95.3% 92.0% 89.3%
Shifted detection rate 95.3% 89.3% 88.0% 84.7%
Mean detection time before first

5h 25m 4h 27m 3h 54m 3h 31m
LEO AF with original window
Mean detection time before first

7h 26m 6h 09m 5h 35m 5h 24m
LEO AF with shifted window

temporal window affixed to the burned area product, and for detections from fitting

windows affixed to the leading fire detection determined in the burned-area-fixed

fitting. The three groups of incidents examined all show improved detection times

with use of the threshold algorithm as opposed to the LEO active fire products. Of

particular note is the improvement in detection times when dealing with fires that

have been detected by both active fire products – these fires are generally greater

in duration and radiative output than fires detected by a single active fire product.

Even with multiple LEO detections available, the threshold algorithm is on average

detecting a fire 210 minutes prior to the subsequent LEO detection using the 5K

threshold.

The addition of the temporal window shift increases the differences in detec-

tion time between AHI-based detections and the LEO products even further. The

improved results using this shifted window demonstrate the effect of long-lived

fire on the fitting method, with the larger set of background temperatures available

earlier contributing to a better fit of background temperature and earlier detection.
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Figure 4.3: Associated fittings applied to a pixel at 15.5409°S, 129.2377°E, with a MODIS

burned area product detection at 2016-219 05:20 UTC (shown by the red vertical line). The

algorithm detection threshold set is 4K. This figure shows ongoing fire activity in the AHI

Band 7 brightness temperatures, shown here in blue, surrounding a single VIIRS active fire

detection at 2016-218 16:40 UTC (in orange). With the temporal window based upon the time

of the burned area product minus 23 hours, the first AHI detection at the 4K threshold occurs

90 minutes after the VIIRS active fire detection (initial window detections are black circles).

However, the shifted temporal frame based upon the time of this VIIRS detection produces a

lower fit for background temperature during this night-time period, and the initial fire detec-

tion from AHI moves to 190 minutes before the VIIRS overpass.

This is also more reflective of results that may be achieved using this method in a

psuedo-realtime application, as the fitting window ends closer to the actual fire ig-

nition time. The shift of the temporal window forward in time removes at most 10%

of the fire detections, as these detections may occur on developing fire that becomes

visible more than two hours after the original LEO active fire product detection. This

drop in detections from the thresholding algorithm seems to be exclusively associ-

ated with the group of detections solely from the MODIS active fire product, with

only two fires lost in the 5K threshold from fire detections associated with VIIRS.

This may suggest an increased rate of false positives in the area of study from the

MODIS product is being isolated by this selection criteria.

4.5 Discussion

Whilst the AHI sensor has shown impressive utility for fire detection in this study,

the lack of validated products from the sensor data remains an issue for adoption

of this thresholding method. As noted in [31], the ability to accurately evaluate
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rates of false detection is impeded by the lack of an accurate, verified cloud mask

product for the AHI sensor. Commission errors for cloud cover are particularly pre-

valent in coastal areas and during night-time periods. The adjustment made to the

clear sky product for night-time use in this study is by no means a comprehensive

fix, but considering the average of overnight temperatures in the area at the time of

the year of the study, coupled with the tropical climate and lack of high elevation

areas, brightness temperatures at the low level specified are rarely not associated

with cloud cover. There are ongoing issues with cloud omission from the cloud

product, especially with thinner clouds that may not be detected by a cloud product

but still influence the brightness temperatures recorded by the sensor and decrease

daily average temperatures. If sufficient cloud is present for a period, the sudden

absence of cloud will cause temperature spikes and lead to false positives. Cloud

mask accuracy improvement will allow for a rigorous assessment of the method’s

commission rate in less than ideal conditions. The AHI sensor also suffers from

some image registration issues which cause periodic shifting in brightness temper-

ature values, which is especially notable in areas of high temperature contrast, such

as coastal areas.

In order to investigate the distribution of likely causes for anomaly detection, a

further visual analysis of the algorithm detections from the 4K dataset from Section

4.4.1 was conducted. Incidents were broken into three categories – detections caused

by sudden elevation of brightness temperatures, which reflect fire activity; detec-

tions caused by excessive cloud not captured by the clear sky product, which lead

to poor temperature fitting; and anomalies with no immediately apparent cause. Ex-

amples of these assessed classes can be seen in Figure 4.4. In instances where an AHI

pixel had a recorded MODIS burned area detection within the 48 hour period after

fitting commenced, the cause of attribution in 96% of cases was due to fire activity

detectable from AHI. Where no burned area detection occurred, 67% of detections

from the thresholding method were anomalies caused by cloud, and these detection

instances would have been eliminated from selection with better cloud masking. In

the remaining threshold-based detections not associated with a burned area detec-

tion, a high proportion of detections occurred due to poor model fitting in the early

morning period, which was also noted in [89], and these types of detection errors

may also be reduced by better cloud detection during these times of the day.

Detection rates for thermal anomalies using the different threshold values are

shown in Section 4.4.1, with raw detection rates decreasing as the thresholds are

increased. Evaluation of the appropriate threshold that accurately describes fire

activity in the area is difficult. The burned area product used in this study only

gives an indication of the initial time of fire disturbance, and does not account for

areas revisited by fire or with lingering fire activity over many days. There is also

limited in-situ fire extent data available with which to verify the areas covered by
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Figure 4.4: Examples of temperature fitting and sources of perturbation. a) shows an example

of anomalies in pixel brightness temperature caused by fire activity, b) is an example of neg-

ative temperature anomalies causing false detections, in this case cloud cover, and c) shows

an example of false detection caused by improper fitting of the diurnal model.

fire activity during the study. The high commission rates shown in this table are of

concern, but as discussed in the previous paragraph, much of the commission error

can be explained by the inadequate performance of the clear sky product used.

The method presented in this paper for fire detection using the AHI sensor shows

impressive rates of agreement with fire activity detected by the LEO active fire products

used for comparison. Given the similarity of absolute detection rates between the

MODIS active fire set and the instances where both active fire products are triggered,

these two groups could be considered as one set of results for comparison to MODIS.

These larger fires (detectable at a 1km2 resolution) are almost completely detected

by the thresholding algorithm at the 2K threshold, with a detection rate closer to

88% at the larger 5K threshold. For fires that are smaller than the detection capabil-

ity of MODIS, but can be detected by the 375m VIIRS product, detection rates drop

to around 95% at 2K and around 77% at 5K. These numbers suggest that despite the

smaller sizes of the fires detected solely by the VIIRS active fire product, fire activity

in these pixels will increase at some time before or after the LEO detection to a mag-

nitude that can be detected from the larger area pixel recorded by the geostationary

satellite. This leads to the sensor’s increased revisit rate being more than capable

of making up for the spatial resolution shortfall of this geostationary sensor in a

fire detection role, and reinforces geostationary detection behaviour noted by [89]

in their study on SEVIRI active fire data.

Of most interest from the detection results is the increase in detection capability

for fires which are not detected by either of the LEO active fire products. Given fire-

driven disturbance detected by the burned area product used here, the threshold

algorithm detects active fire in 75% of instances at 2K, down to 50% of instances at
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5K. Fires detected in this set generally take the form of short-lived, intense flam-

ing periods, with typical rises in recorded brightness temperature of between 10-20

K from the typical background fitting and active durations of four hours or less. A

further inspection of this dataset revealed that of the 75 detections from the no act-

ive fire set of pixels at 5K, 41 of these instances had a detection from the threshold

algorithm at a point in time synchronous (± 20 minutes) with a MODIS sensor over-

pass. Despite potential issues such as viewing angle, obscuration due to smoke and

cloud, and the potential differences in the attribution of background temperature

considering the contextual nature of the MODIS active fire algorithm, this is a seem-

ingly high number of omissions by this active fire product in this area, although

these numbers agree with those from [33] concerning the MODIS product. Applica-

tion of the thresholding fire detection technique is required over a wider range of

areas and weather conditions with similar comparisons to LEO overpass times in or-

der to determine whether this heightened LEO omission rate occurs due to the phys-

ical geography of the selected area or whether it is more systematic in nature. Once

again, the detection instances where no LEO active fire detection exists demonstrate

the effectiveness of an increased rate of imaging for detection of active fire.

A number of potential sources of error may affect the results obtained in the

detection analysis. The accuracy of the burned area product used [53] is affected by

rainfall events in sparsely vegetated areas, which reduce surface reflectance, albeit to

a much lesser extent than fire. If there is a significant amount of cloud cover causing

burned area product commission errors, this may cause instability in the fitting

model and lead to thresholding detection errors. Lack of accuracy in determining the

time of first disturbance in a pixel can also lead to active fire activity being missed,

especially in the case of cloud obscuration of the MODIS images used. There is also

a small chance due to scaling issues that fire disturbance is detected in the MODIS

pixel prior to the active fire being able to be detected at geostationary scales. The

temporal fitting window settings used in this study are by no means definitive, and

the nature of the results suggests that flexibility in the time period of fire detection

selected leads to earlier detection of thermal anomalies. Issues may also manifest

with the classifications used to analyse the threshold algorithm with the various LEO

fire products. Locations of all three LEO-based products have been converted to AHI

coordinate space before comparison has occurred, and this may lead to collocation

errors between products due to satellite tracking, view angle and the re-sampling of

LEO products.

With regard to the ability of AHI to detect fires at the same time as LEO sensor

products, the number of successful synchronous detections compares well to syn-

chronous detections from [94], although there are some differences. In this study

the relevant comparison classes are those which have MODIS active fire detections,

which includes the class that contains detections from both LEO active fire products.
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When evaluating the detections for synchronicity where both LEO active fire products

are used, no distinction has been made with regard to which LEO detection is syn-

chronous to the AHI detection, and many of these synchronous returns will relate

to VIIRS active fire detections instead. The [94] study used a spatial window of 5 x 5

pixels to evaluate concurrent detections, whereas this study registered all LEO data

in the AHI coordinate system, and examined the indicated AHI pixel only. Of note

also is the time window used for judging synchronicity in the [94] paper, which

restricts examination to ± 6 minutes from the LEO detection, or at most one AHI

image either side of that point in time. Whilst this is a rigorous method to assess

simultaneous observations, this undersells the ability of the geostationary sensor to

detect fire at a similar time due to the ephemeral nature of fire activity. An example

of this can be found in Figure 4.3, where fire activity is quite easily detected before

and after the LEO active fire product detection, but the relative lack of elevated tem-

peratures in the AHI record around the time of the LEO overpass leads to the pixel

instance being classified as non-synchronous even when fire activity is present. This

behaviour is especially evident with fires in the VIIRS-AF-only dataset, which tend

to comprise of fires with lower activity during LEO capture than other groups, and

this may explain the reduced rate of synchronous capture for this group. Given the

changing fire activity observed in many examples of this type and with refinement

of this method, the ability of the AHI sensor to detect fires in instances such as these

may be under-represented in the results reported here.

As has been discussed previously by [31], the accuracy of background temperat-

ure fitting reduces with an increased number of thermal anomalies. By nature of

the fitting method used for determining background temperature in this instance,

a large number of positive anomalies in the data to be fitted will cause the mean

temperature of the day to rise, which will raise the curve fitted accordingly. Given

the evaluation methods used in this paper this is unlikely to manifest as a source of

omission – unless the brightness temperatures of an entire 24 hour period are uni-

formly raised by fire activity, generally peak periods of fire activity will occur during

a diurnal cycle and be subsequently identified. The model fitting errors caused by

increased fire activity preclude use of this method as a fire monitoring tool at this

point. Given the introduction of a more resilient fitting technique which follows the

ideal diurnal cycle and the theoretical background temperature curve more effect-

ively, this method may be able to be extended into providing a measure of fire radi-

ative power for the initial period of active fire incursion, but would most likely be

limited to examination of the first 24 hours of fire activity. Whilst ongoing monitor-

ing of a fire’s size and intensity is of interest to both ecologists and land managers,

this capability is beyond the scope of this particular method of fire detection.

Understandably, with the far higher number of images of active fire recorded

by the geostationary sensor, the most marked improvement in detection ability is
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in determining fire ignition time as previously demonstrated using both contextual

[88, 45] and temporal [65] based detection algorithms with geostationary data. In

this study, mean values for detection time for the window fixed by the burned area

product range from just under two hours in the case of VIIRS and the conservat-

ive 5K threshold, up to beyond 8 hours earlier with MODIS active fire at 2K, with

detection times improving across the board with threshold temperature reduction.

Improvements in the accuracy of fitting will likely increase the time differences

between the LEO products and the threshold algorithm further.

The extreme detection time improvements associatedwith the threshold algorithm

in the MODIS active fire detection dataset most likely has more to do with the data-

set selection criteria than anything else. Fires that are detected using the MODIS

active fire product exclusively are more likely to occur on days of sporadic cloud

activity, where the 3 – 5 measurements of MODIS give a greater chance of detec-

tion than the two images available through VIIRS. The fitting process used for the

threshold algorithm is vulnerable to increasedmodel instability on days of increased

cloud cover, which may lead to increased commission error in conditions of this

type. Given the very small total of MODIS-only fires with respect to the total burned

area related dataset, it is possible that this subset of pixels also contains an inflated

number of MODIS active fire commissions, although this tends not to be borne out

in the detection rates presented.

Of note here also is the significant improvement of the threshold algorithm in

detection time of fire activity for fires solely detected by the VIIRS active fire product

once the shifted temporal window is applied. Notwithstanding the random element

of cloud obscuration, from visual examination of the AHI temperature data the ma-

jority of fires found exclusively by the VIIRS active fire product in this case are areas

where the peak fire activity occurs well before the VIIRS overpass, and the VIIRS

product detects lingering burning and smouldering activity in the post-burn pixel.

Shifting the temporal window helps the initial detection of fire by significantly in-

creasing the amount of fire-free diurnal signal the fitting process can use, which

leads to a more accurate estimation of the background temperature at the fire’s

ignition time.

By nature of the timing of the active fire and burned area products used, there

will be issues with the exact comparison of the AHI active fire product and the vari-

ous active fire and burned area products produced by the LEO sensors in the time

periods specified. For instance, a burned area product generally requires the use of

visible band imagery to detect changes in surface reflection, which is not possible to

detect at night. This restricts the triggering of the temporal window for temperature

fitting either to the morning or afternoon MODIS overpass, with morning burned

area detections corresponding roughly to fire activity during the previous day and

afternoon detections corresponding to fire activity in the immediate hours prior to
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the sensor overpass. This invariably leads to the ends of the fitting process occur-

ring during the more rapidly changing daytime period, and may manifest in larger

temperature attribution errors than if the fitting times were more evenly distributed

across the diurnal cycle.

This study has shown the results of anomaly detection using the BAT-based tem-

perature fitting technique at a number of temperature thresholds. Assessing the

ideal temperature threshold to use for this particular area at the time of the study is

an exercise in balancing potentially heightened false detection rates associated with

lower temperature thresholds with their superior detection capabilities compared

to higher thresholds. Improvements in the accuracy of the fitting method used will

reduce the detection errors associated with this technique, and may allow for fur-

ther reductions in detection threshold temperatures. Application of this method of

fire detection over differing landforms, land cover types, viewing angles, and times

of the year will further assist in the appropriate selection of detection thresholds

over wider areas of the AHI full disk.

4.6 Conclusions

This paper outlines a method of fire detection utilising the training data acquisi-

tion method outlined in [31] to provide fitting information for 4µm brightness tem-

peratures derived from the AHI-8 sensor over part of northern Australia. This fit-

ting of the idealised background temperature is then used to provide a baseline for

thresholding of the sensor brightness temperature information to provide a method

of determining the time and propensity of thermal anomalies. The method is cap-

able of detection of between 75 – 99% of thermal anomalies reported by associated

LEO products during the period of study, depending upon the threshold selected,

with similar frequency of synchronous detections in comparison to other studies of

this type. The method also detects between 50 – 75% of fires which have a detection

from burned area records, but which have no detection using either of the LEO active

fire products examined. Significant improvements in the initial time of detection

of fire activity have also been achieved, with detection time differences of 5 – 7h in

favour of this method over detections from the examined LEO fire products. This

study supports the conclusions of previous work on the AHI sensor that highlight

its ability to accurately detect and attribute smaller fires than previous geostationary

sensors, but also demonstrates the effectiveness of the new generation of geostation-

ary sensors in detecting thermal anomalies that may not be detected by LEO active

fire products. With the similarities between the AHI sensor and the newly launched

GOES-ABI sensor, this work with some adjustments should be directly applicable to

fire detection studies using this new sensor in the western hemisphere.
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4.7 Thesis Context

This chapter examined the use of the Broad Area Training technique for anomaly

detection purposes in comparison to commonly used fire detection products from

low earth orbiting sensors. Considering the complexity of the BAT process, and the

difficulties involved with applying such a technique to images captured from low

earth orbiting sensors, potential uses of the BAT method are currently more limited

than desirable. The next chapter introduces a change of direction with regard to

brightness temperature estimation, which is less based upon stochastic modelling

of upwelling radiation trends and more upon leverage of real measurements from

prediction images.
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5.1 Introduction

Remote sensing is a powerful tool often used to investigate changes in the land-

scape over time, and has been employed in this way across applications including

vegetation change [36], urban growth [2], and disaster response [6]. The mapping of

change in the physical environment requires some knowledge of the state of the land-

scape pre-change, in order to determine the nature and magnitude of such changes

[55]. In an ideal case, change tracking would make use of data that spans the tem-

poral domain, as well as the spatial domain. Given knowledge about how the earth’s

surface reacts to nominal physical phenomena over time, predictions can be made

about a landscape’s expected behaviour at a subsequent point in time. This inform-

ation can then be leveraged to provide a method of isolating and identifying anomal-

ous landscape-level behaviour, along with identifying obscuring influences such as

cloud, smoke and fire, by comparing a predicted image to data recorded ”in reality”.

Fire detection is a well established application of remote sensing, with many com-

monly used products produced from both low-earth orbit and geostationary sensors

[61, 26, 89, 45]. The most important element of the electromagnetic spectrum for

these purposes is the Medium-Wave InfraRed (MWIR) (3–4µm), where peak emission

from the fire energy source occurs. Excess radiation at this wavelength allows fire to

be detected when it constitutes only a small portion of an image segment (down to

≈ 10−5 of a pixel) [8]. Estimating up-welling radiation at this wavelength is complic-

ated by the dual source nature of electromagnetic energy, with components made

up of thermal emission and solar reflection [5].

Detection algorithms such as those in [26] rely upon the difference of the candid-

ate fire pixel from a reference background value. Generally this reference value is

derived from a convolution-style filtering approach, where values from surrounding

pixels are averaged to provide the temperature estimate. A comprehensive examin-

ation of this practice was undertaken in [32], which highlighted shortcomings in the

use of such a method, especially in areas of high spatial frequency (i.e. heterogen-

eous landscapes). The study showed the contextual derivation of temperature acted

in a manner similar to an edge detector in areas exhibiting rapid spatial changes, in-

creasing errors in temperature estimation variability. These areas are often of vital

importance for fire detection purposes, as they are often found on the edges of areas

of anthropomorphic change, boundaries between forests and urban areas especially.

The practice of using convolution filtering for estimation of MWIR background

radiation is based upon the spatial autocorrelation effect, where areas near to a spe-

cific location are assumed to exhibit characteristics more similar to that location

This chapter has been submitted for publication as: Hally. B., Wallace, L., Reinke, K., & Jones, S.
(2019) A New Spatio-Temporal Selection Algorithm for Estimating Up-welling Medium-Wave Radiation.
to IEEE Transactions in Geoscience and Remote Sensing
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than those further away [82]. The top of atmosphere solar radiation component of

an up-ward welling signal will strongly adhere to behaviour similar to this, due to

its strong relationship with solar azimuth and zenith angles [55]. Surface character-

istics such as the slope and aspect of a surface, land cover type, and water bodies

can all affect the resultant signal emanating from a pixel. However, in areas where

human activity has created frequent discrete and abrupt changes in a landscape, the

strong similarities found in untouched landscapes are less likely to hold true. In

many cases, the likelihood is high that areas exist outside of the immediate prox-

imity of a target pixel that more comprehensively characterise the signal of a loca-

tion than those closer by. Given that typical phenomena that may obscure up-ward

welling signal from a candidate pixel (fires for instance) will display a high level of

spatial-autocorrelation themselves and are more likely to influence areas proximal

to a potential target, having a method of estimation of radiation that is less reliant

on the local area may also provide greater robustness in a solution.

This study seeks to introduce a new method of brightness temperature estima-

tion in the MWIR, based upon determination of locations that more closely resemble

the behaviour of MWIR radiation of the target pixel with a defined local region. This

Spatio-Temporal Selection (STS) method (Section 5.2) tracks the history of brightness

temperatures for a given period, selects training pixels based upon their statist-

ical fit to the target pixel, and makes predictions for brightness temperature based

upon values from a prediction image. Section 5.3 will cover the assessment of the

method’s validity against the common estimation method and Section 5.4 examines

both the results and the potential of the method for improving image reproduction

for other purposes.

5.2 Spatio-Temporal Selection

This section describes the proposed method implementation over the selected data-

set (Section 5.2.1), followed by a formal description (Section 5.2.2) clarifying the

main framework of the method, and outlining the parameters that can be modified

for refinement of solutions.

5.2.1 Test Data Example

For this study, we have used data from the Japan Meteorological Agency’s AHI-8

sensor upon the Himawari-8 geostationary satellite. This satellite, positioned in

geostationary orbit at 140.7°E longitude, provides coverage over eastern Asia, the

western Pacific and Australia with a 16 band multispectral imager (three VIS, 3 NIR,

1 MWIR, 9 TIR bands) [60]. Whilst the main purpose of the sensor is for meteorolo-

gical forecasting, the high temporal resolution (full disk recorded every 10min) has
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Figure 5.1: Locations of the case study areas selected for analysis in this paper, depicted on

the AHI full disk.

encouraged use of the imagery for detection and monitoring of rapid change in the

environment. Images captured from AHI’s MWIR Band 7 (3.7µm were masked for re-

moval of water pixels using the ancillary land-sea masks supplied by the Australian

Bureau of Meteorology. A cloud mask was also applied to the images from this band,

based upon the mask applied to AHI-8 outlined in [94], which was adopted from a

similar mask applied to GOES imagery [95].

To facilitate the study, a number of 200 x 200 pixel case study areas were identi-

fied across the AHI full disk, which are detailed in Table 5.1 and shown in Figure 5.1.

These areas underwent an analysis of fire activity for the year of 2016 using the

VNP14IMGML VIIRS active fire product [75], with the peak of fire activity in a 30-day

rolling window over the year adopted as the central day of a 31 day period of exam-

ination. These case study areas were then divided into 50 × 50 pixel regions, areas

that mainly consisted of sea pixels were dismissed, and from the remaining areas

seven 50 × 50 regions were randomly selected for the analysis. Times selected for

the pixel predictions were at the local times corresponding to 09:00, 12:00, 15:00,

and midnight, with a random offset of (0:50:10) minutes to provide some statistical
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independence for overlapping training sets. The study areas selected cover about

18.5Mha of land in total.

The procedure for providing training data for the image reconstruction was to

select a circular area of 50 pixels in radius surrounding each of the target pixels in

the region, stack the previous 48 images at 2 hourly intervals together, and calculate

the difference between all pixels in the surrounding radius and the target. A root

mean square error could then be calculated from all of these temperature differences

in the training set of images, similar to that shown in the left images in Figure 5.3.

Any training pixels that had less than four coincident observations with the target

over the 48 images were deemed to have insufficient data to determine correlation,

and were eliminated from further analysis. From the remaining potential training

pixels, the RMSEs were sorted, and the 24 pixels with the lowest error compared

to the target were selected for the prediction phase (shown in the right images in

Figure 5.3).

At the prediction step, a minimum of six training pixels had to be available in

order to provide a STS estimate of brightness temperature - targets with less than

six were discarded from analysis. The unmasked values of the training pixels from

the prediction image were then filtered for outliers (removal of ≥ ±2σ), and the re-

maining values were averaged for the target estimation. Comparisons of brightness

temperatures for analysis purposes were undertaken where solutions for STS estim-

ation and the contextual estimate were coincident with a raw brightness temperat-

ure from the prediction image. Contextual estimates were calculated based upon

the guidelines for computational accuracy set out in [32], which determined that

5 × 5 contextual estimates with at least 65% of adjacent pixel availability were the

minimum to ensure contextual estimation accuracy.

5.2.2 Formal Description

Figure 5.2 demonstrates the STS method from first principles. Important variables

for altering the method’s implementation depending upon the conditions of use are

as follows:

• nimage - number of images in the pixel training stack.

• ν - time gap between images in the pixel training stack.

• rtrain - the radius of restraint for searching for training pixels around a target

pixel.

• c - the total number of coincident measurements between potential training

pixels and the target in the training stack.

• ntrain - the number of training pixels selected for use in the target estimation.
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Table 5.1: Specifications for the timeframes, area of the AHI disk and UTC time offsets for

each of the case study areas examined.

CS area Start Date End Date UTC Hours Sectors used

sea 2016-03-30 2016-04-29 02:00–02:50 sea_b: [4400, 4550, 3000, 3150]
05:00–05:50 sea_c: [4450, 4600, 3000, 3150]
14:00–14:50 sea_e: [4350, 4500, 3050, 3200]
23:00–23:50 sea_f: [4400, 4550, 3050, 3200]

sea_h: [4500, 4650, 3050, 3200]
sea_j: [4350, 4500, 3100, 3250]
sea_k: [4400, 4550, 3100, 3250]

nwa 2016-10-23 2016-11-22 00:00–00:50 nwa_b: [3600, 3750, 1950, 2100]
03:00–03:50 nwa_c: [3650, 3800, 1950, 2100]
06:00–06:50 nwa_e: [3550, 3700, 2000, 2150]
15:00–15:50 nwa_f: [3600, 3750, 2000, 2150]

nwa_g: [3650, 3800, 2000, 2150]
nwa_p: [3600, 3750, 2100, 2250]
nwa_q: [3650, 3800, 2100, 2250]

bor 2016-02-14 2016-03-15 01:00–01:50 bor_a: [2550, 2700, 1350, 1500]
04:00–04:50 bor_f: [2600, 2750, 1400, 1550]
07:00–07:50 bor_g: [2650, 2800, 1400, 1550]
16:00–16:50 bor_h: [2700, 2850, 1400, 1550]

bor_j: [2550, 2700, 1450, 1600]
bor_l: [2650, 2800, 1450, 1600]
bor_p: [2600, 2750, 1500, 1650]

thl 2016-02-28 2016-03-29 02:00–02:50 thl_a: [1750, 1900, 750, 900]
05:00–05:50 thl_c: [1850, 2000, 750, 900]
08:00–08:50 thl_j: [1750, 1900, 850, 1000]
17:00–17:50 thl_k: [1800, 1950, 850, 1000]

thl_m: [1900, 2050, 850, 1000]
thl_p: [1800, 1950, 900, 1050]
thl_q: [1850, 2000, 900, 1050]

chn 2016-08-27 2016-09-26 01:00–01:50 chn_a: [950, 1100, 1550, 1700]
04:00–04:50 chn_b: [1000, 1150, 1550, 1700]
07:00–07:50 chn_e: [950, 1100, 1600, 1750]
16:00–16:50 chn_g: [1050, 1200, 1600, 1750]

chn_k: [1000, 1150, 1650, 1800]
chn_m: [1100, 1250, 1650, 1800]
chn_q: [1050, 1200, 1700, 1850]

jpn 2016-05-03 2016-06-02 00:00–00:50 jpn_b: [900, 1050, 2450, 2600]
03:00–03:50 jpn_e: [850, 1000, 2500, 2650]
06:00–06:50 jpn_f: [900, 1050, 2500, 2650]
15:00–15:50 jpn_j: [850, 1000, 2550, 2700]

jpn_k: [900, 1050, 2550, 2700]
jpn_n: [850, 1000, 2600, 2750]
jpn_p: [900, 1050, 2600, 2750]

sib 2016-05-10 2016-06-09 01:00–01:50 sib_b: [200, 350, 1950, 2100]
04:00–04:50 sib_d: [300, 450, 1950, 2100]
07:00–07:50 sib_j: [150, 300, 2050, 2200]
16:00–16:50 sib_l: [250, 400, 2050, 2200]

sib_m: [300, 450, 2050, 2200]
sib_n: [150, 300, 2100, 2250]
sib_r: [300, 450, 2100, 2250]
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Figure 5.2: Flowchart of the STS selection and estimation process.

• λ - the time period from the prediction stack creation whereby training selec-

tions remain valid.

By altering these parameters from those set in this study, a number of theoretical

affects may improve the solution derived. For instance, nimage sets the number of im-

ages over which to assess the validity of training pixels. Generally the larger the num-

ber of assessed images to judge training suitability the better, but this value could be

traded off for a larger search radius to maintain processing efficiency. nimage is also

closely related to the altering of the value of ν - in this study we have selected values

of these two parameters at 48 images and two hours respectively in order to find a

balance of measurements over the diurnal cycle of the training area. The alteration

of these values to affect training accuracy is related to cloud conditions in the train-

ing area during a predictive assessment. Lengthening the time over which pixels are
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assessed for their suitability should mitigate for weather systems and their associ-

ated cloud, but may not account for major alterations that occur in a landscape due

to fires and rainfall events. Training should also occur over a range of diurnal con-

ditions to mitigate the effects of developing convective clouds, which are a constant

feature in some of the assessed landscapes during the afternoon daytime period.

rtrain and ntrain speak to the suitability of the surrounding area around the target

for providing sufficient training data. The search radius rtrain should be increased

or decreased dependent upon the likelihood of correct characterisation, noting that

in certain cases (like in fig. 5.3c) suitable pixels may not display the typical spatial

autocorrelation pattern usually associated with temperature estimation. Increasing

the number of training pixels selected may improve the likelihood of obtaining a

valid estimation, especially in cloudy prediction images, but will likely result in less

accurate estimation when the prediction image is clear, as the extra values for the

target estimation will be coming from less correlated pixel values. The c value set

in the process relates to the expected accuracy of predictor pixels - setting this too

low may result in the selection of training pixels that are highly correlated for a very

short portion of the training stack, but otherwise have little in common, whereas

setting this too high may reduce the effectiveness of the training pixel search, espe-

cially if the number of values approaches the number of valid measurements on the

target pixel over the training period.

5.2.3 Overall Accuracy Assessment

The typical method of assessment of estimation accuracy is based upon the variation

of the respective estimation methods from the recorded values. Whilst this is a

sensible approach to a perfect landscape with no occluding features, the inclusion

of comparisons to anomalous temperature values from the imagery, whether from

fire activity or misattributed cloud, can lead to this type of assessment being flawed.

A situation where obvious image contamination has occurred would penalise the

accuracy of an estimation method that is correctly identifying an error, with the

level of penalty increasing with the effectiveness of the error identification. As such,

results for this study have been produced both with these obvious errors, for the

purposes of comparison with previous studies, and without these anomalous values.

Upon visual examination of the images, an anomaly rate of 2% was adopted as the

standard level of error in the brightness temperature images, in order to not penalise

the accurate identification of these errors.

Two sets of accuracy assessment figures will be presented in the results - a com-

parison of the STS and context estimates to the image temperatures, both including

and without the largest 2% of anomalous differences from the image temperatures,

measured in absolute terms. The mean and standard deviation of differences from
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the image temperature will be reported alongwith the percentage difference in stand-

ard deviation between the two methods.

5.3 Results

5.3.1 Training Pixel Selection

Figure 5.3 displays a typical set of training data selections and subsequent estima-

tions for a number of adjacent target pixels on the east coast of Kalimantan. The

maps to the left of this figure depict of the RMSEs of each of the potential training

pixels relative to the target, with lighter colours in areas that appear more like the

target pixel. In the depicted cases, there is an obvious trend whereby noise values

increase with the distance from the target pixel, which is not unexpected behaviour.

Of interest though is the propensity of selection of training pixels to occur in areas

of similar makeup. In fig. 5.3a lower RMSEs occur in the strip of land immediately

inland from the coast – this area is heavily cleared and contains some urban areas

in comparison to other parts of this region. The second pixel selected more heavily

favours those areas, and the selected training pixels stretch out along the coastal

fringe. The pixel depicted in fig. 5.3c is coastal in nature, and the lowest RMSEs

of training pixels reflect that - the pixels selected for training purposes by STS are

strung out in a line along the coast reflecting this characterisation.

The right half of Figure 5.3 shows the various pixel trajectories over the STS

training period. The red target value is compared to the temperature values of all

pixels in the training set, but only pixels selected for fitting, along with the pixels

describing the 5×5 area surrounding the target, are shown here. Figure 5.3a has the

least noisy contextual temperature estimation shown here, with most disagreement

between the target and the context values occurring in the middle of the day. The

blue training values tend to stick closer to the target, with some mild deviations

mostly in the night-time period where at times no comparison takes place. At time

t the contextual values adjacent are shown in green, whereas temperatures from

the STS training group are shown in blue. In this case the range of values seen in

contextual pixels is around 7K larger, with the contextual mean approximately 5K

below the target figure. The blue STS pixels are more closely grouped, with the

mean value of the STS solution far closer to the recorded value. In this case, the

STS training set shares nine pixels with the contextual surrounds of the target, with

the values obtained from pixels outside of this region strengthening the resulting

solution.

The two figures fig. 5.3b and fig. 5.3c show more extreme examples of poten-

tial pixel trajectories from a highly variable landscape. The contextual pixel val-

ues shown in fig. 5.3b once again show the most variation during the day, but also
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a

2724, 1515

b

2724, 1517

c

2724, 1518

Figure 5.3: Pixel training comparisons for selected pixels in the bor_l group. (Left) shows the

spatial distribution of points selected during the training process relative to the 50-pixel ra-

dius selection area; and (Right) depicts the pixel trajectories over the image set examined

for training, with the prediction target pixel value shown in red, the STS training pixel val-

ues shown in blue, and the surrounding context pixel values in green. Shown at time t is
the distribution of values in the prediction image from both prediction methods, with their

respective means shown as coloured crosses in comparison to the recorded brightness tem-

perature shown as a red dot. Pixels are shown as labelled with prediction time t at 2016-067
04:20 UTC.
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Table 5.2: Accuracy of estimation techniques against brightness temperature values from

the assessed images by case study area. ∆σ is the percentage change between the standard

deviations of the context and STS estimation methods.

Anomalies retained Anomalies removed
Context STS Context STS

Site µ (K) σ (K) µ (K) σ (K) ∆σ% µ (K) σ (K) µ (K) σ (K) ∆σ%

sea 0.004 1.328 0.006 1.066 -19.7 0.014 1.144 0.011 0.849 -25.8
nwa 0.020 1.348 0.052 1.292 -4.1 0.039 1.147 0.078 1.025 -10.6
bor 0.034 1.239 0.142 1.429 15.3 0.032 1.045 0.149 1.203 15.1
thl 0.010 1.274 0.045 0.849 -33.4 0.032 1.105 0.048 0.665 -39.8
chn 0.011 0.937 0.047 0.757 -19.2 -0.006 0.814 0.065 0.635 -22.0
jpn 0.024 1.576 0.027 1.213 -23.0 -0.013 1.413 0.018 1.040 -26.4
sib 0.008 1.541 -0.021 2.139 38.8 0.017 1.327 -0.005 1.779 34.0

demonstrate variation during the night. This type of lagging temperature variation

is a hallmark of coastal locations, where the pixels are often a mixture of land and

water. The water portion of these pixels tends to retain heat during the night in

comparison to the adjacent land areas, and during the day the reduced reflection

coupled with delay in heating of the water compared to land areas results in the

peak temperatures being later in the day. Using the STS pixels reduces the effects of

these pixels on the estimation, once again with a tighter grouping of values and less

low-value outliers. Figure 5.3c shows the fitting of a coastal pixel, with the lagging

of the STS pixel values compared to the higher contextual temperatures. The res-

ultant set of pixel values to base estimates on is much more tightly grouped in the

case of STS, with the resultant mean estimates providing a decrease of estimation

error of 15K when compared to the contextual estimate. Given the appearance of

the pixel trajectories in this case, it is likely that the attributed error in the contex-

tual method in this region is permanent in nature, with seasonality and tidal effects

being the major contributing factors to potential variation in this error.

5.3.2 Overall Accuracy Assessment

Table 5.2 describes the errors and standard deviations of the two assessed estim-

ation methods against the measured brightness temperature values for each case

study area. Biases of both methods tend to be fairly low, with all but one study

area having mean differences of less than 0.1K. Increases in the means of the STS

estimation tend to be due to the ommission error of the cloud mask used, which

drives estimates from STS lower due to the prevalence of misattributed cloud. The

four study areas showing the most improvement in variation were thl, chn, jpn, and

sea, with decreases in estimate variation of between 19–34% in the dataset includ-

ing anomalies. Of particular note is the improvement in estimate error in the chn
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study error, where contextual estimation performs significantly better than in the

other areas covered.

Temperature estimation using the STSmethod remains a challenge in the bor and

sib case study areas, with increases in the variation of estimates of 15% and 39%

respectively. Errors in these areas with STS estimation are generally caused by the

large amount of cloud occlusion present in these image sets, both with regard to the

training period, which causes mis-selection of training pixels, and in the prediction

image, where cloud values reduce the number of training pixels that can contribute

to a solution for a target.

The error rates for the estimates reported with anomalous temperatures removed

shows a decrease in variance for both estimation methods, with a 10–17% drop

in contextual estimation error, and a 16–28% drop in STS estimation error. On the

whole the elimination of outliers treats the remaining STS variations favourably, with

an decrease in comparison to the context estimates across all sites. The selection of

the 2% anomaly rate seems to be supported by these numbers, although decreases in

reported variance were much lower in the jpn area than others, due to a much higher

rate of anomalous temperature differences resultant from the extreme landscape

and land use variability in the area. If this ”outliers removed” dataset is assumed to

be a better account of temperature estimation for the bulk of temperature values,

temperature characterisation is improving using the STS method by up to 40% in

favourable conditions.

5.3.3 Image Assessment

Figure 5.4 shows a series of images that demonstrate both the STS and contextual

methods over a subset of the thl region. The area shown is centred over the Loei

province of northern Thailand, with the northern half of the image over western

Laos. From left to right, images shown are the brightness temperature image from

AHI Band 7, the STS estimation of the region, and the contextual estimation of the

region. The two rightmost images show the differences between the first image and

the second and third images respectively, giving an overall assessment of temper-

ature differences. At first glance, in fig. 5.4a there appears a marked similarity in

the landscape depiction produced by STS in comparison to the sensor image. Fine

details in the image are retained – the silhouette of the Mekong River shown in the

upper centre of the brightness temperature image is also evident in the STS estima-

tion, along with the stratification of temperature zones in the north and west of the

region. In contrast, the contextual image performs the role of a smoothing filter, re-

ducing the contrast of the image overall and dulling the finer details of temperature

change. These effects can be seen most markedly in the differencing images with an

overall decrease in both the high and low temperature magnitudes seen on the STS

94



5.3. Results

a 2016-082 02:10 UTC

b 2016-082 05:20 UTC

c 2016-082 08:10 UTC

d 2016-082 17:10 UTC

Figure 5.4: A series of brightness temperature images and related estimations for the thl_j

region. From left to right, the AHI B07 brightness temperature at the prediction time, the

STS prediction image of the area, the contextual estimation of the area, and the differences

between the AHI image and STS estimates, and the AHI image and context, are shown. The

differences shown highlight positions where the recorded image value is higher than the es-

timation (red) and vice versa (blue). Prediction times are shown next to each figure.

difference image compared to the equivalent for context. Despite the overall lower-

ing of temperature variation, the STS method is still identifying some anomalous

pixels in the original image, in the west and south of the STS difference image.

The increased error experienced at the midday period can be seen in fig. 5.4b,

which shows the result of an estimation at noon local time. A marked feature of this
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Table 5.3: Breakdown of the availability of temperature values using the two estimation meth-

ods against total image pixels present. n BT Obs gives the number of cloud free image pixels

out of the total possible shown in Total Pixel Obs.

Site Total Pixel Obs n BT Obs % context-image % sts-image % sts-context

sea 2142472 1253867 93.96 120.17 127.90
nwa 2170000 1634662 96.65 116.40 120.44
bor 1694460 1028491 90.68 131.03 144.49
thl 2162560 1715681 97.23 112.96 116.18
chn 2149044 1153593 95.10 118.34 124.45
jpn 1754724 725493 90.68 119.36 131.63
sib 2168264 801329 90.19 117.36 130.12

particular image time is a number of anomalies shown in the STS difference image

in the area. The large amount of red pixels that may signify agricultural burning in

the area are easy to identify on the STS difference image, but tend to get mixed with

the landscape edge effects in the contextual difference image. One notable effect

of these high temperature anomalies in the context difference is the subsequent

effect these higher temperatures have on estimation at the edge of the anomalies.

The high temperatures tend to result in a ring of low temperature results surround-

ing this activity – generally fire detection algorithms remove this problem by flag-

ging the fire pixels as anomalous before estimating surrounding temperatures, but

a treatment such as this has not been attempted on the data presented here. Fig-

ure 5.4c and fig. 5.4d show the subsequent progression of the temperatures in the

area through the afternoon and into the next night. Landscape patterns seen during

the day tend to change at night due to differences in surface emissivity and sub-

sequent heat retention/loss, but the STS estimation has no issue with maintaining

image reproduction quality even with changes in the distribution of temperature

gradients. Some anomalous temperature activity in this area continues throughout

the night – the contextual estimation highlights the anomaliesmore strongly at night,

but also provides a far noisier solution for pixels not undergoing anomalous activity.

5.3.4 Estimation Availability

Table 5.3 shows a breakdown of the availability of estimations using the STS and

context methods against the recorded brightness temperatures from images. The

first two columns of this table report the total amount of land pixels assessed from

the 7 50 × 50 regions from each case study for the 124 images of the assessment

period, and the number of pixels that recorded a brightness temperature value once

the cloud mask was applied. Cloud as assessed by the cloud mask was least preval-

ent in the thl and nwa areas, and most prevalent in the jpn and sib areas with more
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than half of all pixels affected by cloud. Contextual estimation can occur in 90–97%

of cases where brightness temperature values exist, which is a higher rate of estim-

ates available than reported in [32], but this rate is highly dependent upon the cloud

identified by the cloud mask used. With the STS training selection process, the di-

versity of the sampling area means that estimation can take place in more fragmen-

ted images where contextual estimation may not be possible. Of course, due to the

50 pixel buffer applied to each temperature estimation process, the area that can be

potentially sampled is far higher than for contextual temperature estimation, but if

the assumption is made that average cloud conditions are similar over the buffered

area to those over the assessed area, the STS method provides estimates of temper-

ature in around 20% more cases than the brightness temperature images themselves.

It is beyond the scope of this study to assess the accuracy of those extra pixels

provided by the STS method, but there is potential to provide a source of validation

for missing values in an image using STS in cases such as these.

5.4 Discussion

With regard to parameter selection for STS in this study, it is important to note that

only one set of parameters have been examined, and this affects the results coming

from the STS estimation in a number of ways. The training of pixels in this instance

occurs over the preceding 48 images at a two hour spacing - a total training period

of 96 hours. Training accuracy is reliant on pixels gathering variation through the

time series in order to filter out less accurate prediction pixels - significant periods

of cloud during this training process will lead to a reduction of coincident measure-

ments between the target and ideal prediction pixels within the search radius. This

weakness to cloud cover during the training period could be mitigated by variation

of the time between training images - lengthening the time between images would

result in the lessening influence of weather effects in the short term. Care must be

taken though to ensure that training happens within a reasonable period before the

prediction step, as changes to the landscape will increase the error of those pixels

when attempting to find matches. The opportunity also exists to shorten the time

step if a known period of clear sky exists before the prediction step. A fuller reck-

oning of the method’s accuracy when altering the time step is required to make re-

commendations on these effects. Another opportunity the STS method affords to

estimation of temperatures is the ability to select persistent training pixels, which

could also assist in periods where training data is less accurate. Training pixel loca-

tions can be held fixed over subsequent prediction steps if the noise in the nearer-

term time series of predictors is too great, and this is also another potential topic

for investigation.
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a bor_g region at 2016-052 07:50 UTC

b nwa_f region at 2016-315 00:50 UTC

c bor_f region at 2016-068 16:10 UTC

d chn_e region at 2016-241 04:50 UTC

Figure 5.5: Examples of common error in contextual brightness temperature estimation and

the results using STS in similar conditions.

It is less certain whether other parameters set in this implementation of STS re-

quire further iteration. The number of training pixels set for prediction is fixed in

this instance at 24, and this was done to provide a direct comparison to the number

of pixels usually available for contextual estimation. The pixels selected in the train-

ing step are the pixels most like the target available - adding extra training pixels

will add some extra robustness to estimation in the face of cloud in the prediction

image, whilst adding extra noise to the solution in more favourable conditions. The

likelihood is high that users will prefer most robust solutions on cloudy days, and
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the exact number of training pixels required to supply this requires further examin-

ation. The radius of prediction set in this study has generally resulted in an accurate

set of training pixels for estimation in most cases, with notable exceptions being

in some coastal and urban areas, and where major landscape change has occurred

during the training period. Locations such as these may benefit from a wider range

of pixels to provide training data, but increasing the search radius does involve a

quadratic leap in processing time. Areas displaying these temperature behaviours

may be better served by a concerted classification scheme, in order to identify ideal

training pixels outside of the search bounds, without unduly increasing a search ra-

dius that is adequate for most solutions.

In general, use of the STSmethod for estimation results in a 20–30% improvement

in global variation of brightness temperatures, with most notable improvements

of up to 40% in the Thailand sites examined. Given the nature of the STS imple-

mentation here, there may be still room for significant improvement in temperature

estimation beyond those figures. Susceptibility to cloud cover remains a major con-

cern, as it does with any method of background estimation. The cloud mask used in

this study seems to have trouble with ommission errors in these case study areas,

which causes erroneous pixel values to slip through and contribute to the training

evaluation. These errors can affect both the training data, which will eliminate more

accurate training pixels from the selection, and the target pixel itself, with temper-

ature errors caused by cloud hampering the comparison of all pixels to the target.

These target errors can lead to mis-selection of training pixels that share the same

errors at the same times over more accurate selection candidates. The periods of

high cloud cover experienced in the Borneo and Siberian study areas may not explain

all of the errors that occurred in these locations, but this extra cloud cover coupled

with the poor performance of the cloud mask used in this study suggests that signi-

ficant improvement in performance in areas such as these may be as simple as the

adoption of a more appropriate cloud product.

With regard to the range of contextual variation shown here in comparison to

the results reported in [32], selection of the time of day of images analysed is an

important consideration – the previous study selected only one time point during

the day, whereas predictions in this study are made at four time points over one

diurnal cycle. Notwithstanding this, values calculated by context estimators agree

well with the previous study apart from decreases in variation in the jpn area and

increases in variation in the bor and sib areas.

Comparison sets used in this study have only focused upon areas where bright-

ness temperature from the original AHI image and estimations from both the con-

textual and STS methods have been available. This omits the portion of pixels that

achieve a STS estimate with sufficient robustness that lack a coincident contextual

estimation. The threshold set for this study on contextual availability stem from the
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study by [32], which concluded that 65% of available adjacent pixels was the min-

imum for achieving sufficient accuracy in estimation. As the error in STS estimation

similarly relates to the number of predictors available and is not adjacency-based, it

is possible that some or all of the STS pixel estimations outside the valid contextual

area are healthy estimates of temperature.

Notwithstanding the issues with cloud demonstrated in this study, one potential

adaptation to the STS that may make cloud less of a factor could be internal imple-

mentation of a cloud masking procedure. The STS process in a clear sky state has

been shown to give highly accurate background predictions, and has demonstrated

the ability to pick out misattributed cloud (see Figure 5.5c). Given enough confid-

ence in estimations from a clear period, anomalous predictor pixels in a prediction

set could be flagged as such, with estimations within the same image steering clear

of using these marked training pixels. This could also feed into an updated training

image for use in subsequent prediction activity further in time. There are limits to

the effectiveness of such a process - a persistent period of bad weather may break

the continuity of cloud propagation through the training series, and demonstrated

issues with landscape change during the training period may still not be adequately

addressed by such an approach. Nevertheless, such an extension if made to work

could enhance results coming from this estimation method further.

Further examination of the STS method in action can provide insights into com-

mon artifacts see in contextual temperature estimates, and can highlight problems

that need additional attention. Examples such as areas of low temperature anom-

alies around high temperature anomalies (fig. 5.5a), high temperature anomalies

engulfed by neighbouring anomalous values (fig. 5.5b), low temperature anomalies

suffering similar treatment (fig. 5.5c), along with standing anomalies such as urban

heat islands (fig. 5.5d) demonstrate the instability of using contextual temperature

estimation in proximity to anomalous behaviour. Results coming from these types

of estimations fail in the situations that they are most heavily relied upon, and fire

algorithms have been changed to accept the follies in the contextual estimation pro-

cess rather than the other way around.

Whilst the simplicity of contextual temperature estimation will ensure its use

will continue through many applications, the context method suffers demonstrable

flaws in areas of high spatial heterogeneity, with standing anomalies of up to 5K

seen in areas of this study. More sophisticated image reconstruction methods, such

as the STS, display much better performance in these areas, and as computational

costs and hurdles reduce in size, there should be a willingness to explore use of

methods such as these to augment existing temperature estimation practice. Short

of embracing other methods, there are simple things that can be done during the im-

plementation of contextual estimation, such as outlier elimination, that can reduce

errors and lead to more accurate products. The time of simply applying a smooth-
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ing filter to a satellite image and calling it a day should be long gone – we can do

better.

5.5 Conclusion

A new MWIR background temperature estimation method has been developed which

uses similarities between a target pixels and pixels within a search radius to provide

training data for pixel prediction. The Spatio-Temporal Selection (STS) demonstrates

an improvement of between 10–40% in brightness temperature estimation over the

typically utilised contextual estimation method, with an overall improvement in the

fidelity of image reproduction. The STS method also allows for temperature pre-

diction in areas that are not suitable for contextual estimation, with an increase

of between 16–45% of available estimations, and can act as a pixel estimator in

cases where the target pixel is obscured by cloud (12–31% increase in pixels with

valid temperatures over the base images). Whilst the initial implementation of this

method focuses upon geostationary sensor imagery, the study demonstrates scope

for further investigation into adaption for LEO imagery, and proposes extensions of

the method into cloud masking.

5.6 Thesis Context

This chapter introduced the spatio-temporal selection method of brightness temper-

ature estimation, which is based upon selection of training pixels that most resemble

the target pixel in the immediate area of the target. The method is an amalgama-

tion of both temporal fitting for the comparison of candidate pixels, and contextual

methods, considering that often STS will select candidates from the target pixel con-

text. This chapter highlighted the potential of this method for high fidelity recon-

struction of brightness temperature images. The concluding chapter will not only

summarise the content of the preceding chapters, but it will also examine theoretical

improvements available to STS users and the potential for use in other applications.
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6.1 Summary of Results

Satellite remote sensing has a long and successful history of use for fire detection

purposes, and with changing climatic conditions and the increase of human-induced

landscape change, more accurate and timely fire detection is increasingly important.

An intrinsic property of many of the fire detection algorithms in common use today

is the reliance on knowledge of the unperturbed state of the candidate pixel for

detection. As this cannot be measured directly, due to the outsized contribution

of fire to the overall radiation budget, methods of estimation of this unperturbed

state must be employed in order to accurately identify anomalous behaviour from

image pixels. The favoured method by far for achieving this estimation, in most

operational products, is use of an estimation based on the brightness temperatures

of the pixels immediately surrounding the candidate pixel, in a convolution filtering

style process.

The accuracy of contextual-based brightness temperature estimates are restric-

ted by how similar the surrounding landscape is to the candidate pixel. Factors

such as the slope and aspect of the landform, land cover and land use heterogen-

eity, and the presence of water in the surrounding pixels, all contribute to resultant

errors in temperature estimation using context. Further perturbing influences such

as cloud cover, and in the case of fire the presence of smoke, also influence the po-

tential energy budget attributed to the surrounding pixels and therefore the target

estimate. Despite the widespread use of this type of estimation, no previous study

has quantified the extent of errors that result from the use of such a method. The

central drivers of this thesis study are twofold - first, to quantify the inherent errors

pertaining to use of contextual estimation of background brightness temperature;

and second, to derive new methods of obtaining background temperature that base

their estimates not only upon similarities in location, but upon short-term temporal

relationships that each pixel has with potential candidate estimators.

Recent developments in satellite-sensing technologies make this study timely.

New geostationary platforms, such as the AHI-8 sensor from which much of this

study’s data has been supplied (and GOES-16 ABI), have been launched in the last

four years carrying sensors that have increased our coverage of the globe and, crit-

ically for fire detection, increased our temporal resolution. Coupled with this, the

enhanced spatial and radiometric resolutions of these sensors, now provide us with

comparable image quality of moderate resolution low earth orbit images from only

10-15 years ago. Never before have we been presented with the earth’s diurnal ’heart-

beat’ in as much detail as is being supplied by these sensors. The current paradigm

for brightness temperature estimation is based upon methods that treat images as

discrete and independent, whereas these sensors allow us to do more than that, be-

ing able to leverage information not only from the spatial surrounds of the single
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image, but from the images immediately preceding it in time.

Chapter 1 of this thesis outlines the current fire detection paradigm, and the role

brightness temperature estimation plays in describing the existence of fire in the

landscape. Chapters 2-5 of this thesis focus on addressing the research objectives

outlined in section 1.3, of which the key findings are discussed in this section. This

final chapter provides a summary and synthesis of the major research outcomes,

along with a roadmap for future extension of the methods described in this work

for fire detection and other fields.

Question 1. What is the effect of systematic and structural errors caused by the

use of contextual estimation in common fire detection techniques?

Contextually generated background temperature estimation was shown to be a

sufficiently accurate method in situations where little to no occlusion of the tar-

get context occurs, but this relationship degenerated once more than one third of

the target context is occluded. From a full disk analysis of images from the AHI-8

sensor, it was shown that pixels with less than 65% contextual availability showed

a 61% increase in estimation variability compared to those pixels that suffered no

adjacent cloud coverage, with this rate of variation increasing with less available

context pixels. Given the accuracies as determined in table 2.5, it was deemed that

at least 65% of context pixels should be available in order to accurately estimate the

background temperature of a target pixel from context. This availability percentage

trades off accuracy of estimation versus availability of pixel temperature estimates,

but even at this rate of acceptance more than one in seven pixels (14.5%) will not

receive a temperature estimate.

This study further showed that the use of expanding contextual windows for

background temperature determination, as commonly found in many fire products,

is fundamentally flawed. The error of temperature estimation increases by nearly

50% when increasing the search radius to just 7× 7 in situations where no solution

was present at 5× 5 (table 2.5), and the recovery rate of temperature estimations at

higher window sizes following these rules was poor. For instance, when using the

aforementioned 65% context threshold, expanding the window only increased the

total count of estimates by 3.1%, with most of these estimates displaying standard

deviations above 3K. These estimates are too noisy to be of any real use - any smaller

fires would be completely eliminated given the tolerances that would need to be

applied to have surety in detection of anomalies.

Analysis of contextual estimation also focused upon a number of case study areas

selected to draw upon a wide range of latitude, climate and landform scenarios

in order to identify perturbing influences. The sources of variation highlighted in

these case study areas were almost as diverse as the areas themselves. Sources of

high contextual estimate variation included fire, smoke, snow, seasonal and spatial
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variations in land cover, urban-rural interfaces, slope and aspect, snow lines, and

land-water interfaces. Variability showed significant clustering around landscape

features, with the effects heightened when depicted at larger window sizes. Areas

with high land cover heterogeneity were particularly susceptible to high estimate

variation, and these are generally critical areas for fire detection and monitoring as

they are heavily associated with human activity.

Question 2. How can we use the common diurnal variation of upwelling radiation

to estimate brightness temperature in a robust fashion?

Harnessing the full disk to fill gaps in a model fitting technique proved an effect-

ive tool for generating brightness temperature estimates. The developed method,

referred to as the Broad Area Training method, aggregated the median temperature

of 0.25° × 0.25° blocks by local solar time into an idealised diurnal model of the lat-

itudinal swath. This diurnal model, which was standardised based upon the mean

and standard deviation of each block, was then filtered to remove outliers. Fittings

to individual pixels then occurred using this diurnal model as a basis for a single

value decomposition over the preceding 24h before the prediction time.

In comparison to a single pixel fitting method used in [65], the BAT method util-

ised sufficient data for pixel training in around 86% of cases compared to around

40% for the single pixel method. The BAT method also showed resilience to distor-

tion of the fitting in pixels with increased cloud cover in the preceding diurnal period,

with major improvements in estimate error when between 20–50% of the diurnal

period experienced cloud cover. The method demonstrated increased fitting viabil-

ity in coastal areas and areas of south-eastern Australia that were poorly covered by

the single pixel fitting technique.

Question 3. How effective is the broad area fitting method at identifying fire-

related brightness temperature anomalies in comparison to other fire detectionmeth-

ods?

In comparison to commonly used polar orbit based fire products, BAT derived

estimations provided a solid baseline to identify anomalies in geostationary im-

agery. For situations with fire detections from both the VIIRS and MODIS active

fire products, anomalous activity was recorded in 89.3% of cases at a cutoff tem-

perature threshold of 5K using BAT, with synchronous detection in almost half of

those cases. Considering the much larger pixel size of the geostationary sensor and

the ephemeral nature of fire, the omission rate was considerably lower than expec-

ted. The commission rate of detection using the BAT method at the 5K threshold

was around 23% in comparison to a burned area product adapted for the study area,

which was also lower than expected.

The largest benefit of the BAT method was for first detection. Improvements
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in detection time when using the BAT fittings on AHI temperature measurements

were between 2h and 6h, dependent upon the proximity of the time of fitting to the

first anomaly detected in the diurnal cycle for the 5K threshold. This was expected

behaviour given the much higher temporal coverage of the geostationary sensor,

but was still a promising result in the context of the fitting method and given the

coarse spatial resolution. The study showed the viability of using such a method

in a near-real-time capacity, as the accuracy of temperature fittings improved when

the estimation ended closer to the time of first detection.

Question 4. How can we use similarities in image characteristics over time to

improve temperature estimation over a single-image contextual approach?

Using a defined search radius and discrete set of training images, we identified

candidate training pixels based upon the magnitude of differences from the target,

and then used these training pixels to provide values for pixel estimation in a later

image, a technique known as the spatio-temporal selection (STS) method. The STS

method demonstrates a significant improvement in temperature estimation accur-

acy, with impressive reproduction of images in comparison to the raw sensor images.

The STS method demonstrates an improvement in estimate variation of between

10–40% in areas with sufficient clear sky for pixel training purposes compared to

5× 5 contextual estimation. The STS method also allows for temperature estimates

in more locations, including under cloud, with an increase in estimate availability of

between 16–45% when compared to contextual estimates.

Results from this study also further highlighted deficiencies in contextual estim-

ates when faced with anomalous temperature behaviour, with STS estimates more

readily identifying these anomalies with lower noise and highlighting larger areas of

anomalous temperature behaviour compared to the contextual estimates. The STS

method also has scope for improvement with regard to candidate pixel selection,

with a number of criteria that may be modified to improve the resultant temperat-

ure estimation further.

6.2 The Background Behind Background

In hindsight, a study with a focus upon background temperature estimation seems a

long way from the grand design of fixing satellite fire detection from geostationary

sensors. The study itself has very little to do with the absolute determination of act-

ive fire in the environment, partially due to the difficulties presented by validating

the ephemeral perturbing influence caused by fire. While conducting this research,

with the focus on ever-increasingly complicated algorithms and false alarm detect-

ors, the lack of complexity involved in the background temperature estimate used

by almost all of these fire detection techniques was striking. Why of all things was
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this measure, which seemingly held the key to both finding the fire in the first place,

and then in some methods providing estimates of fire size and severity, based upon

something as crude as an adjusted smoothing filter? Whilst the practicality of using

such a method for estimation, based upon the spatial-autocorrelation principle [82],

is unquestionable, especially in the earlier days of remote sensing when simplicity

ruled all, the general acceptance in the present of this estimation method despite

its obvious flaws drew me in to look deeper.

The first piece of work presented in this thesis attempts to quantify the mag-

nitude of the error associated with the use of such a method. Significantly, the

results are critical of the expansion method used to provide data when insufficient

adjacent contextual information is available for calculation. This widely accepted

method to augment data derived from spatial context doesn’t provide satisfactory

levels of accuracy for calculation of fire characteristics, and barely adds to the num-

ber of pixel estimations anyway, for the price of being heavily computationaly in-

tensive. If only one thing emerges from this thesis as a significant contribution to

the active fire community, it’s that the current paradigm for anomaly detection is

flawed in conditions most likely be associated with fire detection - that is, areas that

may be cloud covered and undergoing lightning strikes, and areas of potential fire

spread that are occluded by smoke. Estimates taken from spatial contextual meas-

urements during these times are a muddled mess. Commonly fire detection tech-

niques (for example the MODIS AF product [26]) have taken a two-pass approach to

anomaly identification, identifying potential anomalies using a series of thresholds,

and then ruling false detections out using a series of tests. The findings of the work

in Chapter 2 strongly suggest that a universal set of thresholds for anomaly iden-

tification is the wrong approach - the dynamic range of recorded temperatures in

some landscapes is such that just scooping the brightest portion of pixels as a first

pass will miss a significant portion of fire activity, and this is reaffirmed in some of

the results of the STS study in Chapter 5.

The flaws seen in estimates derived from spatial context drove the investigation

into the use of other methods for background temperature estimation, but they were

not the sole driver for investigation of the multi-temporal techniques covered in

the subsequent chapters. Recent launches of new generation geostationary satel-

lites, such as the Himawari AHI-8 sensor (used predominately in this study) and

GOES-16 ABI, have seen a general improvement in the level of spatial, temporal and

radiometric resolution available from geostationary imagery. A real opportunity

presented to use the data from such sensors in new and exciting ways, and to poten-

tially break away from the flawed paradigm of contextual estimation by using time

as a dimension in anomaly detection. This being said, adopting a new sensor and

new workflows also poses a series of challenges to efficient and effective research

outcomes. Our greatest challenge with using AHI-8 was the lack of validated cloud
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mask information, which is of vital importance to successful isolation of negative

anomalies in any group of estimation values. We found mixed results with a num-

ber of unpublished masking products, and had trouble understanding the decisions

made in the development of some others that had been applied to this sensor. For in-

stance, the AHI-8 work published by [94] applies a cloudmask based upon a series of

absolute thresholds developed for other sensors, with a high omission rate reported

for use on the GOES sensor [95]. This omission rate, when reconciled with the per-

centage of total cloud cover reported in Chapter 2, suggests that large numbers of

cloud pixels are making it past this masking process, with potentially 15% of all un-

flagged pixels potentially being cloud affected in some way. In spite of this, a lack

of other options drove us to the use of such a mask, with the acceptance that the

errors associated with it could heavily influence the subsequent accuracy of derived

estimates. Our concerns about cloud masking drove the adoption of the BAT pro-

cess, which looked to provide a multi-temporal solution to temperature estimation

without the reliance on cloud masking.

The BAT method creates a new way of determining training data for a signal fit-

ting process - in no other work have I found reference to the use of aggregated

broad area measurements to provide a time-corrected signal. Maybe no one else

was crazy enough to look at it - figuring out how to reconcile local solar time with

image recording intervals and sensor scan offsets to provide the standardised sig-

nal was the result of many months work. Whilst in this case the BAT was used

to isolate a relatively high frequency signal (diurnal variation), there is potential

for its use to map seasonal and annual trends in data sets and subsequently isol-

ate changes. Application in wavelengths other than the MWIR has great potential

for a method such as this, to map changes in sea surface temperature and plant

phenology for instance. Of course, there are obvious improvements that should be

made if these applications are to come to pass. The fitting method, which used a

principal component analysis to derive the fitting trajectory over the prediction vec-

tor, didn’t take into account our knowledge of what the resultant signal should look

like enough. The very strong diurnal signal found in the standard model was often

unable to be reconciled in cloud-affected prediction vectors, even though we knew

what the resultant fitting should look like. Reconfiguring the BAT method of signal

derivation to encompass both external cloud mask data, and to weight the strong

diurnal signal more heavily, would vastly improve what is already an impressive use

of the volumes of geostationary sensor data available for such a task.

The application of BAT fittings to the task of anomaly identification was the topic

of Chapter 4 of the thesis, and whilst the results derived from this study showed im-

provements in detection times especially, the strength of these results vindicates the

choices made in the design of the sensor used, rather than the BAT method. Given

that the relevant information with regard to isolation of potential thermal anom-
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alies identified in Chapter 2 was not available at that time (due to issues with cloud

masking products), a series of thresholds was examined for identifying thermal an-

omalies, instead of tailored thresholds based upon a given study area. The case

study area used in Chapter 4 very closely overlapped that of the north western Aus-

tralia region covered in the contextual analysis study (Chapter 2), and the standard

deviations reported in section 2.3.3 probably suggest that the thresholds used in

this study were too aggressive to definitively categorise fire activity. Nevertheless,

the study showed the practical effectiveness of using such a fitting technique to isol-

ate anomalies, nothwithstanding the potential improvements that could be made

as mentioned earlier in this section. The work also highlighted the importance of

proper analysis of data sources such as the AHI-8 sensor - the vast improvements

in detection time seen in this study would have been just as apparent in a spatial

contextual study of the same fire activity, and the study provided an opportunity to

be measured favourably against active fire products in common usage.

6.3 A New Direction for Real-Time Anomaly Detection

A particularly exciting development in the process of completing this thesis has

been the implementation of the spatio-temporal selection method (Chapter 5) and

the results derived from it. This method, which uses selections of candidate pixels

based upon a set of training images in the recent history before the prediction im-

age, provides images of estimated pixel values with a striking resemblance to the

sensor recorded prediction images, certainly in comparison to the contextual images

presented alongside. The global estimate of error for most sites is an improvement

of around 15–20% based upon the standard deviation of differences from the tar-

get value. The true potential in this method comes from its flexibility in the choice

of training criteria, which is only briefly touched upon in the thesis chapter it was

introduced in.

One of the common themes of this study is the challenge imposed by cloud-based

occlusion and its effect upon accurate temperature reproduction. The STS method

demonstrates a reasonably accuratemethod of temperature estimation, whichwould

be expected to further improve with the addition of a quality cloud mask. The po-

tential lies in the STS method to circumvent the need for an externally provided

cloud mask. If enough clear sky ground temperatures are available at a particu-

lar time point, the accuracy of the training estimators relative to the target pixel can

reveal information about potential anomalous temperature readings in the training

pixels. Given enough variety in training pixels in comparison to target pixels (and

with an increase in the value of ntrain), outliers in the training stacks can be isolated,

and with an ensemble aggregation process based upon the suspected confidence in
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each training pixel, a map of potential anomalies could be created based upon this.

Dependent upon how the model is initialised, anomalies on the fringe of clear sky

areas could be flagged as such to assist in both eliminating erroneous training values

for subsequent estimates, and to identify other anomalous values. In this way, this

the cloud (and fire) isolation process could act in lieu of an explicit external cloud

mask, which may well result in further improvements to method accuracy.

Another unexplored facet of STS is the ability to preserve predictor pixels over

time. To a certain extent, the training phase of STS is independent of the prediction

phase. The exact amount of time that selected training pixels are valid as estimators

is unknown, but the likelihood is that major changes in the location of training pixels

would only occur where there is a major change in the composition of land cover in

either the target pixel or the training pixel. The magnitude of this change is also of

importance of course, but based upon the the relatively coarse spatial scale that has

been examined with imagery in this study (∼2km), disturbances such as fire, land

clearing and flooding are the only factors likely to change the temporal signature of

pixels over time. In an area of relative temperature stability, this means we may be

able to preserve a set of training pixel locations from a good solution to fill in gaps

in estimations when the training data set is severely affected by cloud occlusion.

A more complex task, but not out of the realms of possibility, is the application

of the STS method to non-continuous time series imagery, such as that from polar

orbiting sensors. Considering the STS provides only the location of suitable estim-

ator pixels, and carries forward no information about pixel properties for fitting

purposes, these locations should be able to be applied to individual captures for

prediction purposes, even with image sets that lack a complete diurnal definition. A

major stumbling point with this adaptation may be discrete pixel locations, which

are readily available and regularly repeated in geostationary imagery, but vary wildly

based upon orbital geometries in the case of polar orbiters. This could be coun-

teracted by the use of confidence measures for the given training locations, which

could then be applied in a nearest neighbour estimation or somethingmore complex,

keeping in mind that in most cases the available statistical strength of temperature

estimates is high.

This study has focused upon the estimation of surface temperatures in the con-

text of fire detection, but at their heart these estimates provide a baseline for testing

all sorts of anomalous behaviour in satellite imagery, and mapping short and long-

term change based upon this type of anomaly identification. Results from chapter 5

showed the potential to highlight change due to burnt area in the training set of

certain pixels. Such techniques could be used to highlight land cover change due

to clearing, rainfall events and localised flooding, and in longer term work, urban

encroachment and heat island effects. Due to this study focusing on fire, use of tech-

niques such as STS has only been applied using the MWIR, and these other types
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of change may be more easily identified when these techniques are applied to other

wavelengths. Whilst the methods described in this thesis are not by any means the

panacea for all change detection related issues in remote sensing, there is potential

for some parts of this work to be extended to provide potential solutions to a range

of different problems.

The technological side of remote sensing continues to push forward, with more

advanced sensors and greater volumes of data available from platforms both in po-

lar and geostationary orbits. With this proliferation of satellite information, espe-

cially in the temporal space for geostationary imagery, we possess the capability to

monitor and measure change with a greater capacity that ever before. Polar orbiting

sensors remain the gold standard for research in remote sensing due to their su-

perior spatial characteristics, but their placement in sun-synchronous positions to

aid visible light measurements has kept research from properly tackling the role of

time in prediction techniques. With satellite launching becoming cheaper than ever,

there will soon be a demand for the spatial resolution of products we see from po-

lar orbiters beyond the one or two daily images we currently enjoy. As the current

constellation of polar-orbiters increases the temporal density of observations from

these sources will increase concurrently. The applicability of multi-temporal tech-

niques outlined in this thesis that are effective with geostationary sensors will soon

be applicable to data obtained from an increased number of polar orbiting sensors.

Ultimately the best outcome of this research would be the integration of these

techniques in a data assimilation framework utilising imagery from both polar and

geostationary orbiters, as long as the challenges of scaling between data sources

and coverage variability can be overcome. The need for more research in this fire

detection space remains, and contributions made by this body of work will hopefully

inspire future solutions.
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Summary

Fire is an integral catalyst for change and regeneration in the environment, along

with being a major impact on social and economic activity. In evolving climatic

conditions, wildfires are increasing both in intensity and in area impacted in recent

years. Remote sensing has been used for many decades to provide insight into fire

activity and impact through the use of infrared imagery for active fire detection. Elec-

tromagnetic wavelengths at around 4µm are particularly sensitive to fire activity,

in comparison to nominal conditions which incorporate both solar reflection and

thermal emission of the earth’s surface. Brightness temperature measurements in

these wavelengths isolating such radiative anomalies enable fire detection and attri-

bution from satellite sensors. The processes involved in providing these active fire

products require an accurate estimation of the background brightness temperature

of the area in question without the influence of fire. These commonly used active

fire products generally use a contextual-based estimate to provide this background

temperature information. Whilst this estimation technique is widely accepted for

use, especially in single time-point polar orbiting products, the introduction of new

generation geostationary sensors provides substantial improvements to knowledge

about the earth’s surface, especially with regard to diurnal variation. These sensors

provide an opportunity to not only evaluate the accuracy of context-based estima-

tion of brightness temperature, but to integrate the rich spatio-temporal information

provided by such sensors to improve the accuracy and availability of background

estimates.

In order to determine an adequate level of accuracy required for the derivation of

new temperature estimators, it was important to know the accuracy of the current

paradigm of contextual temperature estimation. To date, whilst contextual temper-

ature estimation is widely used, no definitive study of the expected error in temperat-

ure estimates had been completed. An analysis of the error involved in contextual es-

timation was conducted upon medium wave infrared radiation (MWIR) images taken

by the AHI-8 sensor onboard the Himawari-8 geostationary satellite. Comparisons

were made between contextual estimates and the raw brightness temperature obser-

vations over the AHI-8 full disk for 36 images at 0500 UTC across 2016, and across a

number of case study areas for 31 days of images surrounding the peak fire period

as determined by the VIIRS active fire product. The study found that variation in

temperature estimations from context had negligible bias and standard deviations

around 1.1K when the surrounding 5 × 5 area was clear of cloud, which occurred

in 53.9% of cases. Accuracy diminished as the contextual estimation surface was

obscured, such that pixels with 65% or more context available experienced a 56%

increase in estimate variation. The common practice of window expansion saw the

variation of estimates increase substantially, with 7× 7 windows resulting in a 44%
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increase in variation over the 5×5 results. The study concluded that 5×5 contextual

estimation should be limited to using values where at least 65% of the contextual

surface is available, with no expansion of the contextual window due to the detri-

mental effect on estimation accuracy. This resulted in 1 in 7 non-obscured pixels

(14.5%) in the examined images not having accurate contextual estimates available.

Common causes of increased contextual inaccuracy included coastlines, land cover

changes, slope and aspect of the surface, urban heat signatures and land inundation,

with these effects highlighted in the examined case studies.

With the identification of inadequacies in the contextual estimation method, in-

vestigation of methods to leverage the temporal domain of the geostationary sensor

to fill these gaps was undertaken. Particular focus was placed upon the modelling

of the diurnal temperature variation of locations, and in particular how gaps in

the training data for such models could be filled. Previous studies that had used

diurnal modelling in typically cloud obscured areas had identified deficiencies in

the use of single pixel data for creating temperature models. A new technique was

developed using a standardised model of diurnal temperature variation based upon

the latitude of the examined area, and corrected for local solar time. Results from

models created by this method, known the Broad Area Training (BAT) method, were

compared to a single-pixel derived model and the raw temperature recordings from

AHI-8. The comparison found that the RMS error of the BAT-derived models main-

tained sufficient accuracy for temperature estimation with up to half the estimation

days’ values obscured by cloud, with errors reduced by more than 50% compared

to the single pixel method with between 30 – 70 cloud affected images present in

the day of estimation. The method also increased the availability of training data

for modelling using this type of multi-temporal method, with up to 90% of pixels

across the Australian continent possessing sufficient training data for estimation,

in comparison to 40% for the single-pixel model.

The success of brightness temperature estimation using the BAT method led to

an investigation of the potential isolation of brightness temperature anomalies us-

ing these models. A comparison study was undertaken using active fire information

taken from the MODIS and VIIRS active fire products, and burned area information

from the TERN Auscover MODIS Burned Area product, and information from these

three sources was compared to anomalies isolated from the BAT modelling of the af-

fected locations using a number of rudimentary temperature thresholds. Anomalies

were detected the BAT modelling of temperature against raw image temperatures

in between 75–99% of cases where a LEO fire detection took place, with variation

based upon the threshold set. Synchronous fire activity was detected between LEO

fire products and the BAT anomalies in between 46–68% of case where fires were

identified by both active fire products. Using BAT to find anomalies also resulted

in an increase of anomalies detected above the LEO products, with between 50–75%
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of burned area pixels without LEO active fire hotspots resulting in anomalous tem-

perature detections. The comparison of anomaly time of detection versus the LEO

fire products was not unexpectedly favourable to the BAT anomalies, with improve-

ments in initial isolation of 5–7h over the two LEO products used.

Whilst the BAT method of temperature modelling was relatively successful in

isolation of anomalies in geostationary imagery, investigations led to the identific-

ation of methods of estimation that could theoretically be applied to both geosta-

tionary and LEO sensor imagery. A new method of background temperature es-

timation was developed, this time using the similarities of temperatures measured

in a search radius around the target to be estimated, in order to derive suitable

candidate pixels for estimation from a single image. This method, known as the

Spatio-Temporal Selection (STS) method, was applied to images from a number of

case study areas across the AHI-8 full disk, and comparisons were made with val-

ues from the prediction image and the 5× 5 contextual estimation. The STS method

demonstrates a 10–40% improvement in variation over contextually derived temper-

atures, with marked improvements in visually assessed accuracy. The method also

providesmore estimates of temperature than the contextual estimator, with between

16–45% more pixels able to have their brightness temperature estimated. The study

demonstrated the potential extension of the method into use of LEO imagery and

highlighted other deficiencies with the contextual estimation method that the first

study of the thesis did not identify.
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Samenvatting

Satelliet-teledetectie heeft een lange en succesvolle geschiedenis van gebruik voor

branddetectiedoeleinden, en met veranderende klimatologische omstandigheden en

de toename van door de mens veroorzaakte landschapsveranderingen, wordt nauw-

keuriger en tijdigere branddetectie steeds belangrijker. Een intrinsieke eigenschap

van veel van de branddetectiealgoritmen die tegenwoordig algemeenworden gebruikt,

is de afhankelijkheid van kennis van de onverstoorde staat van de kandidaatpixel

voor detectie. Omdat dit niet direct kan worden gemeten, vanwege de buitenmaatse

bijdrage van vuur aan het totale stralingsbudget, moeten schattingsmethoden voor

deze onverstoorde staat worden gebruikt om afwijkend gedrag van beeldpixels ac-

curaat te identificeren. De verreweg de voorkeur genietende methode voor het

bereiken van deze schatting in de meeste operationele producten is het gebruik van

een schatting op basis van de helderheidstemperaturen van de pixels die direct ron-

dom de kandidaat-pixel liggen, in een convolutiefilterstijlproces.

De nauwkeurigheid van op de context gebaseerde helderheidstemperatuurschat-

tingen wordt beperkt door hoe het omringende landschap is voor de kandidaat-

pixel. Factoren zoals de helling en het aspect van de landvorm, landbedekking en

landgebruik en de aanwezigheid van water in een deel van of in de omringende

pixels, dragen allemaal bij aan de resulterende fouten in temperatuurschatting met

behulp van de context. Verdere verstorende invloeden zoals bewolking, en in geval

van brand de aanwezigheid van rook, hebben ook invloed op het potentiële ener-

giebudget dat wordt toegeschreven aan de omringende pixels en dus op de centrale

schatting. Ondanks het wijdverbreide gebruik van dit soort schattingen, heeft geen

eerdere studie onderzocht hoeveel de fout in de contextuele schatting kan bijdra-

gen aan foutieve resultaten van het gebruik van een dergelijke schatter. De cent-

rale driver van dit proefschriftonderzoek is tweevoudig - ten eerste om de inher-

ente fouten te kwantificeren die betrekking hebben op het gebruik van contextuele

schatting van de achtergrondhelderheidstemperatuur; en ten tweede om nieuwe

methoden af te leiden voor het verkrijgen van een achtergrondtemperatuur die hun

schattingen niet alleen baseert op overeenkomsten in locatie, maar op kortetermijn-

temporele relaties die elke pixel heeft met potentiële kandidaatschatters.

De reeks geschikte sensoren van de huidige dag voor de taak heeft ook geleid

tot een studie van dit type. In de afgelopen vier jaar zijn nieuwe geostationaire

platforms gelanceerd met sensoren die onze dekking van de wereld hebben verg-

root en, kritisch voor branddetectie, onze tijdelijke resolutie van beeldverspreiding

vergroot. Gekoppeld aan de verbeterde ruimtelijke en radiometrische resoluties van

deze sensoren, wordenwe nu steedsmeer overspoeldmet geostationaire beelden die

de beeldkwaliteit van sommige lage aardbaanbeelden van slechts 10-15 jaar geleden

benaderen, zo niet gelijk zijn. Nooit eerder hebben we de dagelijkse ’heartbeat’ van
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de aarde in zoveel detail gepresenteerd als deze wordt geleverd door deze record-

ers. Het huidige paradigma voor schatting van de helderheidstemperatuur is ge-

baseerd op methoden die beelden als discreet en onafhankelijk behandelen, terwijl

deze sensoren ons in staat stellen meer te doen dan dat, waarbij we niet alleen in-

formatie uit de ruimtelijke omgevingen van het enkele beeld, maar ook uit de beelden

kunnen gebruiken. onmiddellijk voorafgaan aan de tijd.

Hoofdstuk 1 van dit proefschrift schetst het huidige branddetectieparadigma, en

de rolschattintemperatuurschatting speelt bij het beschrijven van het bestaan van

vuur in het landschap. De hoofdstukken 2-5 van dit proefschrift richten zich op het

aanpakken van de onderzoeksdoelstellingen die worden geschetst in paragraaf 1.3,

waarvan de belangrijkste bevindingen in deze paragraaf worden besproken. Dit laat-

ste hoofdstuk biedt een samenvatting en synthese van de belangrijkste onderzoek-

sresultaten, samen met een routekaart voor toekomstige uitbreiding van de meth-

oden die worden beschreven in dit werk voor branddetectie en andere velden.

Vraag 1. Wat is het effect van systematische en structurele fouten veroorzaakt

door het gebruik van contextuele schatting in gewone branddetectietechnieken?

Contextueel gegenereerde achtergrondtemperatuurschatting bleek een voldoende

nauwkeurige methode te zijn in situaties waar weinig tot geen occlusie van de doel-

context optreedt, maar dat deze relatie degenereerde zodra meer dan een derde van

de doelcontext is afgesloten. Uit een volledige schijfanalyse van afbeeldingen van

de AHI-8-sensor bleek dat pixels met een contextuele beschikbaarheid van minder

dan 65% een toename van 61% in schattingsvariabiliteit vertoonden in vergelijking

met die pixels die geen aangrenzende bewolking hadden, met deze mate van variatie

stijgen met minder beschikbare contextpixels. Gegeven de nauwkeurigheid zoals

bepaald in tabel 2.5, werd aangenomen dat ten minste 65% van de contextpixels

beschikbaar zou moeten zijn om de achtergrondtemperatuur van een doelpixel uit

de context nauwkeurig in te schatten. Deze waarde wisselt de nauwkeurigheid van

de schatting versus de beschikbaarheid van schattingen van de pixeltemperatuur uit,

maar zelfs met deze acceptatiegraad ontvangt meer dan één op zeven pixels (14.5%)

geen temperatuurschatting.

Deze studie toonde verder aan dat het gebruik van uitbreidende contextuele ven-

sters voor achtergrondtemperatuurbepaling, zoals vaak wordt aangetroffen in veel

brandproducten, fundamenteel onjuist is. De fout van temperatuurschatting stijgt

met bijna 50% wanneer de zoekstraal wordt verhoogd tot slechts 7 × 7 in situaties

waarin een dergelijke behandeling noodzakelijk werd geacht (tabel 2.5), en de her-

stelfrequentie van temperatuurschattingen bij hogere venstergrootten volgens deze

regels was hopeloos. Bijvoorbeeld, bij gebruik van de bovengenoemde contextdrem-

pel van 65% verhoogde het uitbreiden van het venster het totale aantal schattingen

met 3.1%, waarbij de meeste van deze schattingen standaarddeviaties boven 3K ver-

toonden. Deze schattingen zijn te lawaaierig om echt te kunnen worden gebruikt,
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kleinere branden zouden volledig worden geëlimineerd, gezien de toleranties die

zouden moeten worden toegepast om zekerheid te hebben bij het opsporen van

anomalieën.

Analyse van de contextuele schatting concentreerde zich ook op een aantal case-

studiegebieden die werden geselecteerd om te putten uit een breed scala van breed-

tegraad-, klimaat- en landvormen om storende invloeden te identificeren. De bronnen

van variatie in deze casestudiegebieden waren bijna net zo divers als de gebieden

zelf. Bronnen van hoge contextuele schattingsvariaties omvatten brand-, rook-, sneeuw-

, seizoen- en ruimtelijke variaties in bodembedekking, rurale en landelijke interfaces,

helling en aspect, sneeuwlijnen en land-water-interfaces. Variabiliteit toonde signi-

ficante clustering rond landschapseigenschappen, met de effecten verhoogd wan-

neer afgebeeld bij grotere venstergroottes. Gebieden met een hoge heterogeniteit

van de landbedekking waren bijzonder gevoelig voor hoge schattingsvariaties, en

dit zijn over het algemeen kritieke gebieden voor branddetectie en -monitoring, om-

dat deze sterk geassocieerd zijn met menselijke activiteit.

Vraag 2. Hoe kunnen we de gemeenschappelijke dagvariatie van opwindende

straling gebruiken om de helderheidstemperatuur op een robuuste manier in te

schatten?

Het gebruiken van de baan van de volledige schijf om lacunes in een model-

passingstechniek op te vullen, werd bewezen als een effectief hulpmiddel voor het

genereren van schattingen van de helderheidstemperatuur. De ontwikkelde meth-

ode, aangeduid als de Broad Area Training-methode, aggregeerde de mediane tem-

peratuur van 0.25° × 0.25° blokken door lokale zonnetijd in een geïdealiseerd dag-

model van het breedtegewijs zwad. Dit dagmodel, dat gestandaardiseerd was op

basis van het gemiddelde en de standaardafwijking van elk blok, werd vervolgens

gefilterd om uitschieters te verwijderen. Koppelingen naar individuele pixels gebeur-

den vervolgens met het standaardmodel als basis voor een ontleding van een enkele

waarde gedurende de voorgaande 24 uur vóór de voorspellingstijd.

In vergelijking met een enkele aanpassingsmethode voor pixels die werd gebruikt

in [65], ondervond de BAT-methode voldoende gegevens voor pixeltraining in onge-

veer 86% van de gevallen, vergeleken met ongeveer 40% voor de methode met één

pixel. De BAT-methode toonde ook een sterkere veerkracht in pixels met een ver-

hoogde bewolking in de voorgaande dagperiode, met grote verbeteringen in schat-

tingsfouten wanneer tussen 20 en 50% van de dagperiode een bewolking doorwiste.

De methode toonde verhoogde levensvatbaarheid in kustgebieden en gebieden in

het zuidoosten van Australië die slecht werden bestreken door de techniek voor

het toepassen van één pixel, die gebieden zijn die zijn aangemerkt als kritisch voor

branddetectie en -monitoring.

Vraag 3. Hoe effectief is de methode om breed gebied aan te passen bij het iden-

tificeren van brandgerelateerde afwijkingen in helderheidstemperatuur in vergelijk-
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ing met andere branddetectiemethoden?

In vergelijking met veelgebruikte op polaire omloop gebaseerde brandproducten,

leverden BBT-afgeleide schattingen een solide basislijn op om anomalieën in geo-

stationaire beelden te identificeren. Voor situaties met branddetecties van zowel

de VIIRS- als de MODIS-actieve brandproducten werd in 89.3% van de gevallen ab-

normale activiteit geregistreerd bij een drempelwaarde voor cutoff-temperatuur van

5K using BAT, met synchrone detecties in bijna de helft van die gevallen. Rekening

houdend met de veel grotere pixelgrootte van de geostationaire sensor en het kort-

stondige karakter van vuur, was de omissiesnelheid aanzienlijk lager dan verwacht.

De commissie van detecties met behulp van de BBT-methode bij de 5K-drempel was

ongeveer 23% in vergelijking met een verbrand product dat was aangepast voor het

studiegebied, dat ook lager was dan verwacht.

Vergelijkingen voor de tijd van eerste detectie was waar de BAT methode van an-

omalie isolatie straalde. Verbeteringen in de detectietijd bij het gebruik van de BAT-

fittingen bij AHI-temperatuurmetingen waren tussen 2 uur en 6 uur, afhankelijk

van de nabijheid van de tijd van aanpassing aan de eerste afwijking gedetecteerd

in de dagcyclus voor de 5K-drempel. Dit was het verwachte gedrag gezien de veel

hogere temporele dekking van de geostationaire sensor, maar was nog steeds een

veelbelovend resultaat in de context van de aanpasmethode en gezien de grove

ruimtelijke resolutie. De studie toonde de levensvatbaarheid van het gebruik van

een dergelijke methode in een bijna-real-time capaciteit, omdat de nauwkeurigheid

van temperatuurfittingen verbeterde toen de schatting dichter bij het tijdstip van de

eerste detectie eindigde.

Vraag 4. Hoe kunnen we na verloop van tijd overeenkomsten in beeldlocaties

gebruiken omop een later tijdstip een helderheidstemperatuurbeeld te recon-strueren?

Analyse van de fout in gelijktijdige metingen gedurende een discrete tijdsperiode

kan leiden tot de identificatie van geschikte trainingspixels voor daaropvolgende

temperatuurschatting, die wordt onderzocht met behulp van de spatio-temporele

selectiemethode voor schatting. De STS-methode toont een significante verbetering

in nauwkeurigheid van temperatuurschatting, met indrukwekkende weergave van af-

beeldingen in vergelijking met de onbewerkte sensorbeelden. De STS-methode toont

een verbetering in schattingsvariatie tussen 10–40% in gebieden met voldoende hel-

dere lucht voor pixeltrainingdoeleinden vergeleken met 5× 5 contextuele schatting.

De STS-methode maakt ook temperatuurschattingen mogelijk op meer locaties, ook

onder cloud, met een toename van de beschikbaarheid van schattingen tussen 16–45%

in vergelijking met contextuele schattingen.

De resultaten van deze studie wezen ook op tekortkomingen in contextuele schat-

tingen wanneer ze werden geconfronteerd met afwijkend temperatuurgedrag, met

STS-schattingen die deze anomalieën gemakkelijker konden identificerenmetminder

ruis en die grotere gebieden met afwijkend temperatuurgedrag benadrukten in ver-
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gelijking met de contextuele schattingen. De STS-werkwijze heeft ook ruimte voor

verbetering met betrekking tot kandidaatpixelselectie, met een aantal criteria die

kunnen worden gemodificeerd om de resulterende temperatuurschatting verder te

verbeteren.
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