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ABSTRACT 
Samples of leaves, twigs and bark representing typical surface fuels from forests and 
woodlands were systematically heated until combusted under controlled conditions 
in the laboratory. Change in colour of residue was described using R-conversion of the 
Munsell colour system and compared to colours generated from near infrared (NIR) 
scanning. Regardless of the method of heating used, there was very little change in 
physical properties or colour of residues when heated at low temperatures to 200 
°C. Surface fuel samples began to thermally degrade when heated at 300 °C, which 
was reflected in much darker coloured residues that were mostly uniform in colour for 
different fuel types when determined from NIR spectroscopy. When surface fuels were 
combusted at temperatures between 400 and 600 °C, residues were much lighter in 
colour regardless of the type of fuel burnt. Again, residue colours were more uniform 
when described using NIR spectroscopy compared to the Munsell colour system, 
although differences in the consistency of residues (heterogenous production of 
charred material and ash) were still reflected in variations in shading. In several 
instances, colours resulting from NIR scans were closer to the actual colour of residues 
suggesting that it is a more accurate system than colour matching by eye using the 
Munsell colour system. 

This study indicates that there is potential for NIR technology to be used to determine 
fire severity according to the colour of residue after fire. While the general method of 
colour matching is not new, the use of NIR spectroscopy can reduce inaccuracies 
associated with subjective colour matching and poor colour correlation when using 
some forms of automated colour conversion. As shown, spectroscopic methods such 
as NIR can also be used to assess chemical changes in fuels during thermal 
decomposition. This includes quantitative losses of carbon and nitrogen and 
estimating fire intensity according to the temperature that were required to form a 
particular residue. 
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END-USER STATEMENT 
Dr Felipe Aires, NSW National Parks and Wildlife Service 

Traditional observations of fire severity in the field are done by observing the 
percentage of leaf consumption by stratum and percentage of leaf scorched to 
generate an approximate severity metric. These measures are time consuming and 
subjective and are prone to human error depending on the observer’s experience 
and time of observation post-fire. This study progresses the knowledge and provides a 
new way to derive a fire severity metric using handheld NIR scanners and the Munsell 
colour system. This method removes subjectivity associated with colour matching 
made by the human eye and has the potential to be derived into a novel fire severity 
metric. 

The spectroscopic data suggests that the technique could also be developed to 
provide insight into chemical properties of the burnt residues and the implications they 
may have on ecosystem recovery. 

The ability to use handheld NIR systems in the field to accurately determine fire severity 
presents an exciting opportunity for land management agencies. It could lead to new 
ways of validating satellite fire severity measures and postfire monitoring potentially 
saving staff time dedicated to those purposes. 
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1. INTRODUCTION 
Fire, regardless of whether it is planned or unplanned, has an influential role in 
determining how various organisms interact with each other and with their 
environment (Adey and Loveland, 2007; Keeley, 2008). For a complex understanding 
of how fire affects ecosystems, the five components of fire regimes – namely, fuel 
consumption patterns, fire intensity and severity, fire frequency, patch size and 
seasonality – need to be investigated (Keeley, 2008). Of these, fire severity is a metric 
that, amongst other things, estimates the impact that fire intensity has on plant 
communities. It measures the physical change in an area after fire and describes the 
immediate effects on vegetation, litter and soil (Sousa, 1984). These variables are often 
used as a surrogate for fire intensity and are based on data and observations 
obtained from the field that represent short-term effects in the immediate 
environment after fire (Key and Benson, 2006; De Santis and Chuvieco, 2009; Estes et 
al., 2017). Fire severity may also be assessed using remotely sensed spectral indices 
combined with field measured metrics (Key and Benson, 2006; De Santis and 
Chuvieco, 2009; French et al., 2008). Studies of fire severity vary according to the type 
of ecosystem under assessment, but most often emphasise the overall loss of organic 
matter (biomass) both above- and belowground (Keeley, 2009). 

Fire can also cause changes in carbon (C) and nutrient pools through heating 
(volatilisation) and combustion of biomass. Changes in C and nutrients due to biomass 
burning has flow-on effects for ecosystem cycling (Bird et al., 2015). The link between 
measures of fire severity and the impact on ecosystem processes involving C and 
nutrients are often complex and not easy to determine (Kitzberger et al., 2005; Huang 
and Boerner, 2007). Direct impacts of fire on pools of C and nutrients in forests are 
generally easier to quantify. Ash and char production can be used as a broad 
indicator of the temperature reached or heat produced during a fire and can be a 
key factor in understanding impacts on nutrient cycling and landscape recovery 
(Bento-Goncalves et al., 2012). Recent studies have investigated changes in ash 
characteristics, such as colour and fragment size, as an indicator of fire severity 
(Úbeda et al., 2009; Roy et al., 2010; Pereira et al., 2012; Dūdaité et al., 2013; Thomaz, 
2018). Ash colour can reflect the severity of fire in the immediate area and can range 
from heterogenous black ash (char) produced from lower intensity fires through to 
fine, homogenous white-grey ash produced during higher intensity fires (Úbeda et al., 
2009; Pereira et al., 2012; Bodí et al., 2014; Santin et al., 2015). The latter state is a good 
indicator that complete combustion has occurred. The problem encountered here is 
that determination of the colour of char and ash is subjective – colour can be 
perceived and described differently, even when matching against a standard set of 
colours. In addition, surrounding lighting can make a considerable difference to how 
the colour of a given material is observed. 

Spectral analysis of soil has been used to determine a variety of soil attributes, such as 
inorganic soil constituents (e.g. hydroxides, methylenes, sulphur oxides, ammonium 
compounds), soil pH and electrical conductivity, cation exchange capacity, soil 
pedology (clay, sand and silt content), exchangeable aluminium and potassium, 
moisture content and organic carbon (Viscarra Rossel et al., 2006; Stenberg et al., 
2010). These studies highlight the potential use of infrared spectroscopy to determine 
inorganic and organic features of samples and its suitability for other environmental 
applications (Clark, 1999; Rossel, 2007; 2009; Vergnoux et al., 2009; Perez-Bejarano and 
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Guerrero, 2018; Liu et al., 2019). Visible and near infrared (NIR) reflectance regions can 
detect combinations and overtones of vibrational frequencies of bonds in molecules 
in materials. This includes bond vibrations between oxygen and hydrogen (OH), 
carbon and hydrogen (CH), and nitrogen and hydrogen (NH) which results in 
indicative NIR absorbance bands (Burns and Ciurczak, 2007). Using NIR to describe 
residues from combustion can provide useful information about the associated 
mineralogy of samples such as char and ash deposited post-fire (Brook and 
Wittenberg, 2016; Skvaril et al., 2017). 

With the increased availability and reduced cost of handheld NIR scanners, there is 
potential for this technology to be used as a tool in the field to investigate both 
chemical and physical properties of ash. Spectroscopy data collected from char and 
ash from fire could, in theory, be used to estimate losses and changes in availability of 
C, nitrogen (N) and other nutrients from an ecosystem (Liu et al., 2019). 

The aim of the study presented here is to determine whether spectroscopy data of fire 
by-products (char and ash) can be used as a fire severity metric. Colour matching of 
residues, a common method for rapid assessment of ash properties, is generally done 
subjectively using some form of universal colour comparison (e.g. Munsell colour 
system). The method presented here will eliminate human bias for colour matching. 
Spectroscopy data will also be used to investigate changes in the C content of 
residues. Background information and baseline data for this investigation have been 
presented in Milestone 2.3.4 (Final report on advances in soil carbon fingerprinting – 
Quantifying the conversion of vegetation to ash for soil carbon fingerprinting; Parnell 
et al., 2020a) and Milestone 3.1.4 (Draft report on soil carbon and fire severity – Ash 
colour as a fire severity metric; Parnell et al., 2020b), respectively. 
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2. METHODS 
 
2.1 SAMPLE COLLECTION 

 
Trial material 
Bulked samples of three dominant types of surface fuels (leaves, twigs and bark) were 
collected from various locations. The three broad types of fuels were further separated 
according to physical features of each type of fuel. Leaves were classified as ‘curly’ 
(Eucalyptus saligna), ‘flat’ (a mixture of leaves from dry sclerophyll forest), and two 
types of ‘needle-like’ leaves (Pine needles and Casuarina phyllodes; Table 1). Twigs 
were separated into size classes: 0-2.5, 2.5-5.0 and >5.0 mm diameter (thin, medium 
and thick, respectively). Different types of bark were collected from several tree 
species based on varying thickness and density (Paperbark, Smooth bark – Red Gum, 
Smooth bark – Blue Gum and Rough bark – Turpentine; Table 1). 

 

Table 1. Collection location, species and descriptions of surface fuel (trial and field) samples collected 
for the study. All collection sites were in New South Wales. 

 

Category Collection 
location 

Species Descriptive name 

Leaves Richmond Eucalyptus saligna Curly leaves 

Leaves Hornsby Assorted – Angophora costata, E. saligna, 
Syncarpia glomulifera 

Flat leaves 

Leaves Cobbitty Pinus radiata Pine needles 

Leaves Eveleigh Allocasuarina cunninghamiana Casuarina phyllodes 

Twigs Hornsby Assorted – A. costata, E. saligna, S. 
glomulifera 

0-2.5 mm (thin) 

Twigs Hornsby Assorted – A. costata, E. saligna, S. 
glomulifera 

2.5-5.0 mm (medium) 

Twigs Hornsby Assorted – A. costata, E. saligna, S. 
glomulifera 

>5.0 mm (thick) 

Bark Eveleigh Melaleuca quinquenervia Paperbark 

Bark Hornsby A. costata Smooth bark – Red Gum 

Bark Hornsby E. saligna Smooth bark – Blue Gum 

Bark Hornsby S. glomulifera Rough bark – Turpentine 

Leaves Blue 
Mountains 

Assorted species Leaves 

Bark Blue 
Mountains 

Assorted species Bark 

Twigs Blue 
Mountains 

Assorted species Twigs (2.5-5.0 mm) 

Fine fuel Blue 
Mountains 

Assorted species Fine fuel (<0.9 mm) 

Soil Blue 
Mountains 

Assorted species Soil (<0.2 mm) 
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Field material 
Field samples were collected from three unburnt plots from a site located on the 
southern side of the Blue Mountains (34°19'12.0"S, 150°28'12.0"E; 613 m above sea level) 
(Rocky Waterholes, see Bell et al., 2020 for further details). The forest is broadly 
classified as a Dry Sclerophyll Forest and the predominant species are a variety of 
eucalypts, wattles and banksias. Surface fuel samples were collected using a circular 
sampling ring (0.1 m2) and were bagged separately into leaves, twigs, bark, soil and 
fine fuel. Samples were oven-dried for 48 h at 60 °C and then passed through a 9 mm 
sieve to ensure that each grouping only consisted of that specific material. Soil 
samples were sieved using a 2 mm sieve to remove any roots and rocks. 

 
2.3 SAMPLE PREPARATION AND HEATING 

Samples were oven-dried at 70 °C for 3 days. Dried samples were kept in a desiccator 
when removed from the oven and prior to heating in the muffle furnace to prevent 
absorption of moisture from the atmosphere. Subsamples of each fuel type 
(approximately 2.0 g, n = 8) were weighed into foil trays and heated in a muffle 
furnace at 100, 200, 300, 400, 500 and 600 °C for 60 min. Samples were cooled until 
they could be handled safely and reweighed to determine weight loss then stored for 
later analysis. The control samples (referred to as ‘unburnt’) represented surface fuel 
or soil that was not heated or combusted and were held at 25 °C. 

 
2.4 COLOUR ANALYSIS 

Residues of surface fuels and soil remaining after heating and combustion were 
classified according to the Munsell colour system (Munsell Colour Company, 1950). 
This is a system that has been widely used in soil science for classification of diverse soil 
types. Past studies have also adopted this method to classify ash from biomass heated 
at different temperatures (Úbeda et al., 2009; Dūdaité et al., 2011; Balfour, 2013; Bodí 
et al., 2014). Under fluorescent light, ground material was compared to the Munsell 
soil colour chart to determine the associated hue value and chromas at each 
temperature. Photographs were also taken with and without flash for a secondary 
reference. Visually matched Munsell colour scores have been presented previously in 
Parnell et al. (2020a). These scores were imported into R (R Core Team, 2020) and 
converted into generated Munsell colours, using the “munsell” package (Whickham, 
2018). Black, greys and whites that were in the grey range from the visual readings 
were converted in R into the range of N 1/0 to N 10/0 (black to white). 

 
2.5 SPECTROSCOPY DATA 

Small portions of ground samples were placed on clean aluminium foil and scanned 
using a portable spectroradiometer with a fitted handheld contact probe for spectral 
analysis (PSR+ 3500 Portable Spectroradiometer; Spectral Evolution, Massachusetts, 
United States). Spectral analysis was performed in the visible to shortwave infrared 
wavelength range (350-2500 nm) with measurements taken at 1 nm intervals. Each 
sample was scanned five times to reduce variance among scans. A white reference 
panel was scanned before each sample. Scans were analysed using the DARWin SP 
Application Software (V1.3, Spectral Evolution, Massachusetts, United States). 
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2.6 NEAR INFRARED COLOURING 

Reflectance spectral data from between the range of 350 and 830 nm were 
averaged over interval ranges of 5 nm. The values were then divided by 100 to 
change reflectance (%) into proportions (CIE 1976; International Commission on 
Illumination, CIE, Vienna, Austria). Tristimulus values (X, Y, and Z) were determined from 
the averaged values using the standard illuminant E spectral power distribution 
(equal-energy radiator) as the visible light source (Smith and Guild, 1931). The X, Y, Z 
tristimulus values were then converted to the CIE 1976 L*a*b* uniform colour space 
where L* indicates lightness from black (0) to white (100), a* is the red (+)/green (-) 
coordinate and b* is the yellow (+)/blue (-) coordinate (McLaren, 1976). 

L*a*b* colour values were used as input values in Adobe Photoshop CC (2015.1.2 
release; Adobe Inc., San Jose, California, United States) to create a coloured square 
to visualise the colour observed from NIR scans. 

 
2.7 PARTIAL LEAST SQUARES REGRESSION FOR ESTIMATION 

 
A partial least squares (PLS) regression model was generated in R using the ‘pls’ (v. 2.7- 
2; Mevik, 2019) and plsVarSel (v. 0.9.5; Mehmood et al., 2012) packages. Each PLS 
regression model was created using a generic algorithm that randomly selects 
wavelengths from the NIR spectroscopy scans and retains those that continually show 
high performance when correlated against either C or N content or temperature 
values (Mehmood et al., 2012). 
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3. RESULTS AND DISCUSSION 
 
3.1 MUNSELL COLOUR MATCHING 

The Munsell colour system was developed to describe perception of colour by the 
human eye (Munsell Colour Company, 1950). Modern-day computerised colour 
matching systems have been widely adopted in science to improve uniformity of 
colour selection. The hue values and chromas identified for heated and combusted 
samples representing different fuel types and the corresponding colour match 
generated using R are presented in Figure 1. 

Samples of different fuel types heated to temperatures of 100 and 200 °C showed only 
small difference in physical properties and colour compared to their unburnt 
counterparts, mainly only as a slight darkening when heated at 200 °C (Figure 1). 
When heated to 300 °C, most fuel types were completely charred and appeared dark 
brown to black in colour (i.e. N 1/0). This colour represents incomplete combustion 
(Khanna et al., 1994). At 400 °C, half of the fuel types (flat leaves, Casuarina cladodes, 
all twigs and smooth bark from Red Gum) had decomposed into a fine grey or white 
powdery ash (N 5/0 through to N 9/0) indicating almost complete combustion, a state 
where most of the organic compounds had been removed (Úbeda et al., 2009; 
Pereira et al., 2012; Bodí et al., 2014; Santin et al., 2015). These types of fuel showed 
minimal or no additional change in colour when heated at temperatures above 400 
°C. Of the five fuel types which had not been fully combusted at 400 °C, three of them 
(Pine needles, smooth bark from Blue Gum and rough bark from Turpentine) were a 
fine white (N 10/0) or grey ash (N 8/0 or N 9/0) when heated at 600 °C. At this 
temperature, residues from two fuel types (curly leaves and Paperbark) were fine and 
powdery in texture, as for other fuel types, but remained light brown in colour (Figure 
1). 

Surface fuels (leaves, bark, fine fuel and twigs) and soil collected from the field showed 
similar changes in physical properties and colour gradation of residues when 
compared to the trial material (Figure 2). There were minimal differences in colour 
change when heated at lower temperatures of 100 and 200 °C, with darkening of 
material and charring occurring at 300 °C. Soil was the only material which did not 
show signs of charring at 300 °C but it did darken from its initial state (10YR 4/2). 
Between 400 and 500 °C, soil colour was lighter than the control (heated at 25 °C) 
and, at 600 °C, was darker and more orange as the hue changed from 10YR to 7.5YR 
(Figure 2). This process of darkening and lightening is consistent with the literature as 
rubification occurs at higher temperatures where the transformation of iron 
compounds in soils to free iron oxides start to occur (Liedgren, 2017). In general, 
surface fuels collected from the field had fine ash residues that were pale or light 
brown in colour when combusted at 500 and 600 °C (Figure 2) but were not white or 
grey ash as expected. 

Differences in colours of residues, particularly when fuels were combusted at higher 
temperatures, may be due to species composition. Fuel samples collected from the 
field were separated according to physical features (leaves, twigs, bark and fine fuel) 
and may have represented a range of species. As a result, this could affect not only 
the colour of ash, but also the chemical properties of residues remaining at higher 
temperatures. For example, in other studies, differences were found between 
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chemical properties of ash produced from combustion of needles of Pinus sylvestris 
and leaf litter from Acer platanoides (Dūdaitė et al., 2013). Khanna et al. (1994) found 
ash produced by burning litter from a Eucalyptus forest to be highly variable as did 
Mastrolonardo et al. (2017) for ash from mixed forest (dominated by Downy Oak 
(Quercus pubescentis) and Maritime Pine (Pinus pinaster)) in Italy. 

Besides the notion of species effect, another assumption worth discussing involves the 
‘state’ of the material used. Some of the surface fuel samples collected as trial 
material represented a single species (e.g. all curly leaves were from Eucalyptus 
saligna, pine needles were collected from Pinus radiata, different types of bark were 
collected from separate species), were generally newly fallen and were gathered at 
a single point in time. Although field material was collected within a two-day period, 
it was much more heterogeneous in nature according to species composition and 
age and state of decomposition as it may have been newly fallen or on the ground 
for longer periods of time. There are at least two stages of decomposition of plant 
litter. The early stage of decomposition involves leaching of soluble compounds and 
decomposition of soluble and non-lignified cellulose and hemicellulose, and the later 
stage is when degradation of lignified tissue occurs (Couteaux et al., 1995; Heim and 
Frey, 2004). Composition and age of fuel samples can influence the way the sample 
is burnt and the resulting chemical composition of ash (Mao et al., 2017). 

It should also be noted here that it is well recognised that combustion of plant biomass 
in a muffle furnace is not the same as what might happen in the field (Qian et al., 
2009; Bodí et al., 2011; Hogue and Inglett, 2012). Residues are more homogenous 
when heat can be applied for a greater period of time and chemical reactions that 
occur during combustion are more complete. With flaming combustion, fuels are 
subject to different amounts of heat for different periods of time and will result in much 
more heterogenous residues. To overcome this, some laboratory studies try to mimic 
burning in the field by combusting material in an open vessel (e.g. Gabet and Bookter, 
2011). 
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Figure 1. Description of colour as hue value and chroma for each of the representative trial fuel types when heated or combusted at six different temperatures 
using the Munsell soil colour chart (Munsell Colour Company, 1950). The Munsell colour notation is as follows: R = Red, YR = Yellow-Red, Y = Yellow, B = Blue, PB = 
Purple-Blue and N = neutral. 
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Figure 2. Description of colour as hue value and chroma for each of the fuel types collected from the field when heated or combusted at six different temperatures 
using the Munsell soil colour chart (Munsell Colour Company, 1950). The Munsell colour notation is as follows: R = Red, YR = Yellow-Red, Y = Yellow, B = Blue, PB = 
Purple-Blue and N = neutral. 
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3.2 NEAR INFRARED SPECTROSCOPY 

 
Reflectance patterns 
Using near infrared spectroscopy, there is potential to distinguish both similarities and 
differences in residues produced from heating and combustion. At wavelengths 
ranging from 350 to 2500 nm, peaks and declines in reflectance can be matched with 
the presence of certain chemicals in materials (Viscarra Rossel et al., 2006; Teye et al., 
2013; Jamshidi, 2017). Spectroscopic scans of residues produced after heating and 
combustion of trial fuels are provided in Figure 3. 

There are striking similarities in patterns of peaks for all fuels when unburnt (Figure 3b) 
and after heating or combustion at 100, 200 and 300 °C (Figure 3c, d, e). An exception 
to this was found for Paperbark heated at 100 °C. The spike in reflectance between 
2000 and 2500 nm for this fuel type was comparable to residues from leaves and other 
bark heated at 400 °C (Figure 3f). Based on similarities in spectroscopic data, it could 
be inferred that chemical changes occurring in Paperbark at low temperatures are 
similar to changes occurring in other fuels at a higher temperature. This could be 
anything from volatilisation of soluble nutrients (i.e. N) to thermal decomposition of 
various plant cell components (i.e. cellulose, hemicellulose and lignin). 

At the highest temperatures, 500 and 600 °C, although each fuel type had varying 
reflectance peaks at different wavelengths, their respective groupings (leaves, twigs, 
bark) were relatively consistent at a given wavelength (Figure 3g, h). The exception 
was for ash from smooth bark from Red Gum when combusted at 500 °C, where there 
were no significant peaks detected at any wavelength and the lowest reflectance 
values were recorded (25-35%) (Figure 3g). 

Surface fuel samples collected from the field varied considerably when compared to 
the trial material (Figure 4). Overall, the reflectance values were smaller, with the 
highest peak being 180% at 500 °C for wavelengths between 2000 and 2500 nm 
(Figure 4f). In contrast, the highest peak in trial material occurred at 400 °C in the same 
wavelength range (600%; Figure 3f). Fine fuel and soil had the lowest reflectance of 
all surface fuel types and had similar peaks for the 350-2500 nm wavelength range 
when unburnt or heated to 100 °C (Figure 4a, b). Under the same conditions, leaves, 
twigs and bark had similar patterns of peaks with higher reflectance than soil and fine 
fuel, but all fuel types had similar reflectance at 200 °C (Figure 4c). Residues formed 
from combustion of both soil and surface fuel at 500 and 600 °C had a similar range 
of reflectance values and patterns (Figure 4d, e, f, g). 

The reflectance patterns of residues from the trial material combusted at 500 and 600 
°C were markedly different from their respective counterparts collected from the field 
(Figure 3 and 4). As discussed previously, this could be due, in part, to the different 
stages of decomposition of the plant materials collected (Couteaux et al., 1995; Heim 
and Frey, 2004; Mao et al., 2017). 
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Colour matching 
Reflectance values between 350 and 830 nm were analysed using a spectral 
calculator to determine the respective L*a*b* colour coordinates. L*a*b* coordinates 
determine the lightness (L), red/green (A) and the yellow/blue (B) spectrum of the 
sample. The resulting L*a*b* colour values from the NIR scans from the trial material 
(Figure 5) and the field material (Figure 6) are presented. 

For the trial material, only a small colour change occurred when heated at 100 and 
200 °C, with all the samples darkening at the higher temperature (Figure 5). When 
combusted at 300 °C, all samples were black, ranging from jet black to clouded 
black, and at 400 °C, and for all samples the L*a*b* colour had lightened with residues 
from flat leaves and Paperbark remaining dark grey (Figure 5). At 500 and 600 °C, 
surface fuels had reached their final stage of combustion and the lightest L*a*b* 
colours were observed. The exceptions were curly leaves, Pine needles, smooth bark 
from Blue Gum and thin twigs, where the L*a*b* shade at 600 °C was darker than the 
colour developed at 500 °C (Figure 5). 

Despite heating and combusting replicate surface fuel samples under controlled 
conditions in a muffle furnace there was variation among residues, both in particle 
size and colour, within a given fuel type (see Figure 7 for examples of heterogenous 
residues). Some of the replicate samples showed varying degrees of charring 
(indicated by black particles of varying size) when combusted at temperatures 
between 400 and 600 °C while others were completely converted to fine 
homogenous ash. As each L*a*b* colour coordinate is an average of five replicate 
NIR scans from each sample, it is possible that this physical and colour variation was 
captured and reflected in slightly different shades. This raises the question of the 
sensitivity of NIR scanning and the possible need for ‘step changes’ in colour rather 
than ‘gradational changes’ to indicate the degree of thermal decomposition of fuel. 

Surface fuels collected from the field showed a similar pattern to the trial material with 
the residues from heating at 100 and 200 °C darkening only slightly in their L*a*b* 
coordinates. At 300 °C, a deep brown/black colour was observed for leaves, fine fuel, 
bark and twigs (Figure 6) rather than the expected range of black observed for the 
trial surface fuels. With combustion at 400 to 600 °C, the residue colour increased in 
lightness resulting in a range from grey brown to a light brown with red yellow 
undertones (Figure 6). In contrast, residues of combusted soil were orange brown in 
colour due to the process of iron oxidation, as discussed previously. 
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Figure 3. Reflectance values from trial material of surface fuels for (a) foil background standard, (b) unburnt material, (c) samples burnt at 100 °C, (d) 200 °C, (e) 
300 °C, (f) 400 °C, (g) 500 °C, and (h) 600 °C, between 350 and 2500 nm. Values are indicative of an average of five replicate scans. Note variation in maximum 
reflectance values. 
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Figure 4. Reflectance values of surface fuels collected from the field for (a) unburnt material, (b) samples burnt at 100 °C, (c) 200 °C, (d) 300 °C, (e) 400 °C, (f) 500 
°C, and (g) 600 °C, between 350 and 2500 nm. Values are an average of five replicate scans. 
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Figure 5. L*a*b* colours derived from data extracted from near infrared spectroscopy of residues from different types of surface fuels used as trial materials (leaves, 
twigs and bark) when heated and combusted at temperatures between 100 and 600 °C. 
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Figure 6. L*a*b* colours derived from data extracted from near infrared spectroscopy of residues from different types of surface fuels collected from the field (soil, 
leaves, fine fuel, bark and twigs) when heated and combusted at temperatures between 100 and 600 °C. 
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3.3 COMPARISON OF MUNSELL AND NEAR INFRARED COLOURS 

Using the ‘munsell’ R package (Wickham, 2018), it was evident that there are 
discrepancies in manually converting visual colours into computer-generated 
colours. The ability to convert grey colours from visual scores to R was limited as 
the various undertones of grey, yellow and red viewed in person could not be 
translated successfully. For example, a grey which had a blue undertone was 
translated the same way as a grey which had a yellow/red undertone (Figure 7). 
The way that the package selects colours also slightly differs to the Munsell soil 
colour chart used, as the package only allows chroma to increase by increments 
of 2 while the manual colour chart allowed the capacity to increase one 
increment at a time. This caused misalignment, albeit slight, between the actual 
colour of the sample and Munsell colour value. An example of this can be seen 
in Figure 7b. The residue colour of rough bark from Turpentine was calculated to 
be olive green using the R conversion of Munsell colour compared to the L*a*b* 
counterpart derived from NIR spectroscopy which was much closer to the actual 
colour. 

Many previous studies have attempted to determine how well individuals 
(experienced and novice) are able to manually match Munsell colour charts with 
soil. It has been suggested that only experienced soil scientists can interpolate 
between Munsell colour charts to the nearest hue and half unit of value and 
chroma (Pomerening and Knox, 1962; Shields et al., 1966; Cooper, 1990; Post et 
al., 1993; 2006; Rabenhorst et al., 2014). It has been identified that soil colour 
observed using Munsell soil colour charts are strongly influenced by the 
environmental conditions in which they are measured (illumination) and by the 
experience and colour vision of the observer (i.e. normal and colour blind), 
creating a subjective measurement which can create inconsistencies between 
individuals (Stiglitz et al., 2016). 

Although Munsell colour matching has been used in soil science for decades, 
advancements in modern technology have permitted greater precision in the 
measurement of colours, eliminating the need for subjective visual assessment 
and removing the limitation in the range of colour tones available. As an 
alternative, the CIE L*a*b* system has been developed and trialled (Kirillova et 
al., 2015). The system is physically-based, mathematically-oriented and can be 
more reliable than colour charts due to the closeness it has to human vision 
(Marques-Mateu et al., 2018). From the study presented here, we support the use 
of the L*a*b* colour system to characterise char and ash residues from 
combustion of surface fuels and encourage further testing to use portable NIR 
scanning to determine fire severity in the field. 
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Figure 7. Comparisons of Munsell colours, residues and L*a*b* colour of (a) flat leaves, (b) rough 
bark from Turpentine, and (c) medium twigs, from the trial material burnt at temperatures between 
100 and 600 °C. 
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3.4 USING NEAR INFRARED TO PREDICT CARBON, NITROGEN AND 
TEMPERATURE OF RESIDUE FORMATION 
To develop predictions of C and N content of residues and the temperature that 
it was formed at from the NIR scans, a partial least squares (PLS) regression model 
was used. Partial least squares regressions are used to build models which make 
predictions from more than one dependent variable (Long, 2013). Regression 
models using PLS have x and y values selected to maximise the correlation 
between scores of x and y variables. In this instance, the PLS was generated to 
build an equation that can predict laboratory data (C, N and temperature) 
based on spectral data (wavelengths). 

The data was analysed together as a large grouping in the PLS regression model 
instead of being analysed individually in their logical groupings (e.g. fuel type, 
heating or combustion temperature and respective %C and %N values). This 
approach was taken to emulate a ‘real world’ prediction as contributing 
components are likely to be mixed and, as such, a prediction that incorporates 
a combined analysis of all materials would hypothetically provide a more 
accurate prediction. In contrast, separate PLS regression models were 
developed for surface fuels from both the trial and field collected materials. 
Resulting model metrics are shown in Table 2. 

 
Table 2. Model metrics of a partial least squares (PLS) regression model of predicted values and 
carbon, nitrogen and temperature data derived from trial material and surface fuels collected 
from the field. Components = number of components selected in the PLS regression, RMSE = residual 
mean squared error, R2 = r-squared value, MAE = mean absolute error 

 

Variable Components RMSE R2 MAE 
Trial surface fuels 
Carbon (%) 7 9.66 0.79 7.34 
Nitrogen (%) 6 0.45 0.53 0.30 
Temperature (°C) 6 66.70 0.88 50.05 
Field collected surface fuels 
Carbon (%) 2 10.33 0.69 8.36 
Nitrogen (%) 7 0.16 0.69 0.09 
Temperature (°C) 7 62.73 0.90 50.18 

 
 
Partial least squares regression models related to temperatures at which residues 
were produced resulted in better predictions for both trial and field material with 
R2 values of 0.88 and 0.90, respectively. The PSL regression modelling had a mean 
absolute error (MAE) of 50 °C for both field and trial material, and errors of 63 and 
67 °C for the predicted values (Table 2). This means that if a temperature of 350 
°C was predicted according to the NIR scan of a given residue, the actual 
temperature may have been between 300 and 400 °C. 

The PLS regression model for C content (%C) in surface fuels collected from the 
field had a lower R2 value (0.69) coupled with a higher error (8.4 %C) compared 
to the model for the trial material (R2 = 0.79, error = 7.3 %C) (Table 2). As measured 
values of %C in residues from the trial fuel samples varied from 48-58 %C in unburnt 
fuels and those heated at 100 and 200 °C (Parnell et al., 2020a), this error 
represents predictions of %C being within a range of 41-65 %C. When trial surface 
fuels were combusted at 300 °C and analysed, they contained from 50-75 %C 
depending on fuel type. For example, Paperbark, medium and thick twigs all had 
50 %C or lower (Parnell et al., 2020a). This means predictive values based on NIR 
scans could range from 43-82 %C. At higher temperatures, small amounts of 
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C, generally less than 10%, remained in ash residues suggesting that the 
predicted amounts of C could be far less (2 %C) to nearly double (18 %C) what 
might be reasonably expected. In this case, the predicted error is relatively more 
important for ash residues with low C content. 

A similar situation applies for prediction of N content in residues. Prior to heating 
of most surface fuels, measured N content was low (0.5-1.2 %N) (Parnell et al., 
2020a) which, when coupled with a MAE of 0.09 %N for trial surface fuel samples, 
represents a predictive range from NIR scans of 0.4-1.3 %N. For surface fuels 
collected from the field, the associated MAE was higher (0.30%; Table 2) 
suggesting that the predictive range of N% is less accurate and ranges from 0.2- 
1.5 %N. The MAE is much more important when considering residues with low 
amounts of C and N. 

Using the PLS regression models developed, predictions and respective 
measured values of %C, %N and temperature (°C) data were correlated (Figure 
8). As examples of how these predictive plots can be used, when trial samples 
are heated to a temperature of 180 °C, it is expected that there would be 44 %C 
and 0.4 %N remaining in heated materials; at 280 °C there would be 57 %C and 
1 %N in charred residues, and at 633 °C there would be 1.1 %C and 0.07 %N in 
ash. 
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Figure 8. Linear regression plots displaying the correlation between measured carbon (%; a, d), nitrogen (%; b, e) and temperature (°C; c, f) data and predicted 
values for trial material (a, b, c) and field material (d, e, f). Predicted values were generated using partial least squares regression models developed using 
information from all fuel types and near infrared scans generated at all wavelengths3. 
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4. CONCLUSIONS 
The use of the Munsell colour system, though highly subjective, can provide useful 
indirect information about fire severity as there are distinct patterns among 
temperature and the colour of ash residues for Australian fuels. In this study, we 
have demonstrated that spectroscopy data from NIR scanners can be used to 
remove subjectivity associated with colour matching. As seen in the 
spectroscopic data, it is evident that there are identifiable peaks at different 
wavelengths, which could also provide insight into various chemical properties 
of residues and the implications that fires of different severity may have on 
ecosystem recovery. As demonstrated using PLS regression models, it is feasible 
to predict carbon and nitrogen in ash residues and the temperature at which 
fuels were combusted with NIR spectroscopy. This research can be used to justify 
further investigation of the use of handheld NIR systems in the field for determining 
fire severity. 
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