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EXECUTIVE SUMMARY 
Fuel loads are a main driver of fire rate of spread. Therefore, a spatially explicit 
estimation of fuel loads, coupled with their variation through time may improve 
wildland fuel management and contribute to the design of more efficient active 
fire response strategies. However, the high frequency of planned and unplanned 
fires in large wild areas linked to varying fire severity levels that affect the rate at 
which fuels re-accumulate, make the continuous monitoring of wildland fuels 
challenging with field-based survey methods. Here we propose the use of 
satellite remote sensing to map fuel loads with a revisit time of 16 days. Fuel load 
maps are produced for five Defence Lands using Landsat and Sentinel-2 optical 
remote sensing data available at Digital Earth Australia and the National 
Computation Infrastructure. The fuel load maps are obtained by calculating the 
time series of the Vegetation Structure Perpendicular Index, an index that 
measures post-fire disturbance, and fitting these to fuel accumulation curves 
derived from literature. 
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END-USER STATEMENT 

Frederick Ford, Australian Department of Defence, ACT 

The Australian Department of Defence manages millions of hectares of bushfire 
prone land across Australia. Empirical knowledge of fuel load is a key aspect of 
Defence management, both as a trigger for hazard reduction activities, and in 
assessing the current suitability of an area for an activity with an inherent risk of 
ignition to occur. Even in smaller properties, ongoing active use by Defence 
means that on-ground access for fuel load monitoring is problematic. However, 
some northern Australian Defence properties are hundreds of thousands of 
hectares in size, and it is practically infeasible to establish an accurate on- 
ground fuel load monitoring program. Reasonable estimates of fuel load and 
management requirements can be gleaned from fire history. However, Defence 
sought a remote sensing method that could potentially overcome the contraints 
to fuel load monitoring, and ideally be available as an input into real- time 
decision making tools that incorporate empirical fuel load and fuel state data 
with terrain, weather and other variables. Defence also sought a method to 
provide calibrated, spatially explicit, estimates of fuel accumulation rate for 
slower-developing southern fuels such that intensively managed fuel zones (e.g. 
Strategic Fire Avantage Zones) could be reasonably scheduled for management 
without an ongoing requirement for ground-based fuel load monitoring as a 
trigger for management. 
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INTRODUCTION 
The estimation of spatially and temporally explicit post-fire fuel accumulation is 
key in fire management. Fuel loads are a main driver of fire behaviour, affecting 
particularly the rate of spread (Anderson et al. 2015; Garnica 2009; Gill and Zylstra 
2005; Sullivan 2009). Therefore, knowing the fuel load at different locations can 
help design more effective fuel treatment strategies, and plan firefighting 
operations during active fires (Boer et al. 2009). The monitoring of the processes 
of fuel accumulation based on traditional field surveys is very challenging. This is 
due to the high variability in both space and time of these processes across fuel 
types and different levels of fire severity that would require frequent field 
campaigns. In most cases, this is not feasible due to the inaccessibility and large 
extension of wild areas. For example, extensive areas are dedicated to military 
training by the Australian Department of Defence (Defence Lands). The Defence 
Lands are for the most part wild. However, there is a need to strategically 
manage fuel loads in order to reuce risk to neighbouring communities and assets, 
and to maintain some areas in a low-fuel state to mitigate the risk from 
unintentional ignitions that may derive from military activity. 

Satellite-based sensors allow for a deep understanding of the Earth surface 
processes by capturing the evolution of different land covers at relatively high 
spatial and temporal resolutions (Xie et al. 2008). These provide the unparalleled 
opportunity to map fuel condition as it changes seasonally (Yebra et al. 2018) 
and fuel load as it changes in a longer time frame because of disturbances such 
as fires (Massetti et al. 2019). The spatial resolution of Landsat satellites (30 m) 
allows resolving changes at the forest stand scale while covering all Australia’s 
surface with a revisit time of about 16 days. In combination with the more recent 
Sentinel-2 satellites, the revisit time can be improved to 3-5 days. Furthermore, 
the shortwave infrared electromagnetic radiation reflected by plants and 
acquired by these sensors is related to fuel load, fuel structure and condition 
(Asner et al. 2015; Elvidge 1990). The Vegetation Structure Perpendicular Index 
(VSPI) is a metric that relates to post-fire fuel accumulation based on the 
shortwave infrared channels. The VSPI can be used to map fuel accumulation in 
Australian environments that burn frequently. Here, we propose as a study case 
the estimation of maps of fuel loads of every available Landsat and Sentinel-2 
satellites acquisition at five priority Defence Lands. 
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BACKGROUND 

DEFENCE LANDS 

Five areas were selected as study cases to estimate the fuel load and post fire 
accumulation. These Defence Lands are scattered across the Australian territory: 
Mount Bundey is in the Northern Territories, Shoalwater Bay and Wide Bay are in 
Queensland, Holsworthy Barracks is in New South Wales and Puckapunyal is in 
Victoria (Fig. 1). Mt Bundey surface is 105,398 ha and the fuels range from low 
woodland to open eucalypt forest. Shoalwater Bay surface is 269,100 ha most of 
which characterized by eucalypt forest and woodlands, heath and mangroves 
and a few pockets of rainforest. Wide Bay surface is 19,596 ha and is 
characterized by eucalypt forest and palustrine wetland. Holsworthy Barracks 
surface is 18,931 ha (including two minor Lands: Camp Sapper Training Area and 
Moorebank Area) and is mostly characterized by eucalypt forest. Puckapunyal 
surface is 42,071 ha characterized by box-ironbark forest and grassland. 

FIGURE 1 OVERVIEW OF THE LOCATION AND SCALE OF THE FIVE DEFENCE LANDS WITH TRUE COLOUR LANDSAT IMAGERY INSETS. SOURCE: VIVID 
AUSTRALIA. 
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RESEARCH APPROACH 
The Landsat data, available at Digital Earth Australia (link) was used to compute 
the VSPI that represents a measure of fuel load depletion (Fig 2). The Python code 
used in this work is available in a GitHub repository (link). The VSPI measures a 
disturbance from the steady-state represented by a vegetation line and is close 
to zero for undisturbed forest-stands while increasing when a wildfire decreases 
the amount of vegetation (Fig 3). Consequently, the VSPI was calculated at 
each study area as the perpendicular distance from the vegetation line (Massetti 
et al. 2019).  

FIGURE 2 METHODOLOGY OVERVIEW 

 

1 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =   (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 − 𝑏𝑏) 

√𝑎𝑎2  + 1 
Eq 1 

In Eq 1, a and b are the slope and the intercept of the vegetation line, 
respectively; and SWIR1 and SWIR2 are the values of the top-of-canopy 
reflectance of the short-wave infrared Landsat bands at 25m spatial resolution, 
that are centred at wavelengths of 1.6 and 2.2 µm of the electromagnetic 
spectrum. Different vegetation lines were derived for each study area by 
selecting an area undisturbed from fires for at least ten years and derived as the 
linear regression of the reflectance values in the shortwave infrared bands across 
time 10 years. 

Given that the VSPI is a disturbance metric, a model that linked fuel load and 
VSPI time series is needed to obtain a quantitative estimation of fuel load. To this 
end, the exponential decay model developed by Gould et al (2011), that 
describes surface and near-surface fuel accumulation as a function of time after 
fire t (Eq 2) was fitted to the VSPI value at t months after fire (VSPIt) using three 
regression values a, b and c (Eq 3). 
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https://www.ga.gov.au/about/projects/geographic/digital-earth-australia
https://github.com/Massetting/vspiDefence.git
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𝑘𝑘𝑘𝑘 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 1.60 (1 − 𝑒𝑒(−0.22 𝑡𝑡)) 

𝑚𝑚2 Eq 2 

 
𝑘𝑘𝑘𝑘 (−𝑐𝑐 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒 𝑎𝑎𝑏𝑏 
𝑚𝑚2 Eq 3 

Eq 3 describes the exponential decay of fuel load in function of the increase of 
VSPI disturbance. A least-squares minimization function was used to optimize the 
regression values a, b and c in Eq 3 to the fuel loads obtained from “time since 
fire” from Eq 2. This optimization was performed on the post-fire time series of the 
geo-median of the VSPI after a wildfire in Holsworthy Barracks, and then used for 
all the areas. Firstly, the dates of all the fires in the historical time series were 
determined by finding the local maxima of the VSPI; the latest fire with at least 3 
years of uninterrupted recovery was chosen and the time in months t after the 
VSPI maximum was used in Eq 2 to obtain fuel loads which were then used to 
optimize the regression values a, b and c in Eq 3 for all VSPIt in the time series. 

 

FIGURE 3 THEORETICAL BASIS OF THE VSPI 
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RESULTS 
Two historical fires were identified by selecting the VSPI local maxima of each 
pixel in Holsworthy Barracks area (Fig 4). A fire in 2003 affected the northern area 
(red), while a fire in 2001 affected the southern and eastern areas (orange). The 
gullies and small valleys were affected to a lesser extent and were not detected 
in any of the fires by the VSPI. The 2003 fire was selected for fitting the fuel load 
model.  

FIGURE 4 HISTORICAL FIRES DETECTED AT HOLSWORTY BARRACKS BY IDENTIFYING THE LOCAL MAXIMA OF VSPI FOR EACH PIXEL 

The regression values obtained by the least-squares’ optimization were a=351, 
b=1.09 and c=-4.94, which, simplifying Eq 3 equal to: 

 
𝑘𝑘𝑘𝑘 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑒𝑒(−0.008 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡) 
𝑚𝑚2 Eq 4 

Eq 4 was used to estimate fuel loads as a function of the observed VSPI value. 
This allowed producing fuel load maps for the study areas. Follow a few examples 
of fuel load maps obtained at different study areas. Access to the fuel maps 
animations is available through the following link. 

At Holsworthy Barracks, just before the 2003 fire, the fuel loads were low, (<0.4 
t/ha) in the southern section of the area (Fig 5.A) due to the fire that occurred in 
2001 (Fig 4). The fire in January 2003 (identified in Fig. 4) consumed most of the 
fuels (≈0 t/ha) in the northern part of Holsworty Barracks, while did not spread in 
the southern area due to the low fuels and potentially effective suppression 
efforts (Fig 5.B). Four years later, in January 2007, some of the fuels in the north- 
western area recovered to over 10 t/ha of fuel (Fig 5.C) which is similar load to 
what it was observed before the 2003 fire (Fig 5.A). However, at that time, some 
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residual patches of lower fuels are still visible (6 < fuel load <  8t/ha) from both the 
2003 and the 2001 fires (Fig 5.C). 

Several planned fires were detected during the early dry season of 2019 in the 
Mt Bundey training area (reds in Fig 6.B) which consumed most (remaining <2 
t/ha) of the very high fuel loads previously in place (> 16 t/ha, dark greens in Fig 
6.A). Towards the end of the dry season, almost all the Mt Bundey area 
underwent fuel load loss (Fig 6.C) due to fuel reduction practices, probably 
favoured by the dry weather and the seasonality of the low woodland to open 
eucalypts forest in the area. However, some of the areas that burnt in May with 
lower severity (6-8 t/ha, yellows, arrow in Fig 6.B) already started to accumulate 
fuels (8-10 t/ha, yellow to pale green, arrow in Fig 6.C). 

 

 

 

 

 

 

 

 

 
FIGURE 5 FUEL LOAD MAPS AT HOLSWORTHY BARRACKS JUST BEFORE (A), SOON AFTER (B) AND 4 YEARS AFTER (C) THE 2003 FIRE. LOW FUEL LOADS 
ARE REPRESENTED IN RED, HIGH FUEL LOADS ARE REPRESENTED IN GREEN 

 

 

 

 

 

 

 

 

FI GURE 6 FUEL LOAD MAPS DURING THE DRY SEASON OF 2009 AT MT BUNDEY TRAINING AREA 
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FIGURE 7 FUEL LOAD MAPS AT SHOALWATER BAY DURING THREE DIFFERENT YEARS 

At Shoalwater Bay, a fire in April 2017 (red area indicated by an arrow in Fig 7.B) 
consumed all the fuel loads visible 11 months before (16 t/ha, area in green 
indicated by an arrow in Fig 7.A). The re-accumulation captured in February 2018 
for the same area (arrow in Fig 7.C) showed a radial pattern with higher fuel loads 
at the perimeter (green >10 t/ha) and lower in the centre (yellow 7 t/ha). This 
different load accumulation occurred despite observed homogeneous severity 
(red at arrow in Fig 7.B) and pre-fire distribution (green at arrow in Fig 7.A) 

When compared to the other 4 areas, Wide Bay presented the lowest fuel loads 
with an average of 8 t/ha and maximum values not exceeding 10 t/ha (Fig 8). A 
fire in May 2017 reduced the loads from values between 8-9 t/ha in July 2016 
(yellow to pale greens indicated by the arrow in Fig 8.A) to <2 t/ha (reds areas in 
Fig 8.B). 25 months later (June 2019) the area appeared to have re-accumulated 
most of the fuels seen in 2016, but a few areas remaining with low fuels (reds and 
yellows area indicated by the arrow in Fig 8.C). 

Finally, the forests mapped at Puckapunyal showed loads ranging between 8 
and 10 t/ha (pale greens and yellows in the central and western sections of Fig 
9, in correspondence of the dark green covers visible in Fig 1). Observing the 
January fuel load maps of three consecutive years, a lower loading is noticeable 
in 2018, when compared to the previous year (grees becoming yellow in 
correspondence of the arrows in Fig 9.A and 9.B). In January 2019, the load 
generally increased without reaching the initial levels seen in 2017 (Fig 9.C). 
Generally, the areas of forest bordering with the grassland (the red areas in the 
north-east) showed lower loads than the central and western areas in which the 
rivers may provide higher moisture availability in dryer years contributiong to 
higher fuel build-up. For example, in 2018, only a limited area of forest near the 
river to the center showed loads >10 t/ha (in deeper green Fig 9.B), while 
surrounded by loads <8 t/ha. 

Since the fuel load model in function of VSPI was calibrated in a forested area of 
Holsworthy Barraks, the maps do not represent well grasslands loading. The red 
areas on the north east of Puckapunyal, for example, showed very low values in 
the maps presented (Fig 9), while showing unlikely extremely high values in other 
dates (not presented; available at the link above).  

 

 

 

 

 

 

 

 

FIGURE 9 FUEL LOAD MAPS AT PUCKAPUNYAL BETWEEN SEPTEMBER 2016 AND JUNE 2017 
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DISCUSSION 
The case studies presented in the previous section demonstrate that VSPI is highly 
sensitive to fuel loads in different biomes. The recovery observed at Holsworthy 
shows that the fuel load reduction caused by the 2003 fire left the forest with a 
very patchy distribution of fuel loads up to 4 years later (Fig 6). A similar 
phenomenon was captured in the fire seen in Shoalwater Bay (Fig 7), in which a 
consistently burnt fuel showed a discontinuous spatial distribution of the fuels 
accumulated in the following year. At Wide Bay it is also observed a 
discontinuous fuel reaccumulation 25 months after a fire (Fig 8). 

A discontinuous post-fire fuel loading is due to compound effects that influenced 
the pace of fuel re-accumulation, such as, 1 – fire severity; 2 – fuel moisture 
contents and topographical ubication (for example, the higher humidity levels 
in the bottom of the gullies may boost recovery rate) and 3 – seed bank and 
plant species present (i.e. the presence of obligated seeders species vs sprouters 
species). 

The availability of such fuel load maps may prove pivotal in the design of new 
controlled burns, for example, by targeting only the areas with higher loads, or 
prioritizing treatment of areas that present spatially consistent high fuel loads. 
Moreover, as seen in Puckapunyal, the fuel load maps we propose capture 
fluctuations in fuel loads from one season to another even in absence of fire 
events (Fig 9). In this context, these maps can be of great value to calculate the 
potential rate of spread of active fires allowing timely intervention. 

Furthermore, Mt Bundey maps demonstrate the possibility to assess the 
effectiveness of controlled fires to reduce fuel loads. Some of the fuels that were 
burnt earlier in the year and at low severity accumulated a substantial amount 
of fuel within only 4 months from the fuel reduction burning. 

The load can be very different depending on the type of fuel. For example, 
Shoalwater Bay and Wide Bay showed different overall loading (>16 and <8 t/ha, 
respectively in Figs 7 and 8) due to different forest density and type. While these 
differences were captured in relative terms, they may not be quantitatively 
relevant due to the calibration of the model having been made at Holsworthy 
Barracks, where very specific forest loading and type were in place. In turn, the 
values for grassland shown are not valid due to different reaccumulation and 
fuel loading of this fuel type, that would require a dedicated accumulation 
model. 

 



USE OF REMOTE SENSING DATA TO DERIVE EXPLICIT FUEL ACCUMULATION CURVES ACROSS DEFENCE LANDS | REPORT NO. 579.2020 

 14 

CONCLUSIONS AND RECOMMENDATIONS 
The Landsat and Sentinel-2 time series available at Digital Earth Australia can be 
used to compute VSPI and detect fires and fuel load depletion and re- 
accumulation processes. The VSPI uses the shortwave infrared channels to 
detect structural changes to the fuels. We fitted the VSPI post-fire time series to 
available fuel accumulation curves, capturing the changes in fuel loads at five 
Defence Lands locations. The fuel accumulation processes were thus highlighted 
in a spatially and temporally explicit way. 
 
As a proof of concept, due to the limited availability of fuel re-accumulation 
curves and ground truth data collected for different Australian biomes during 
post-fire recovery, we calibrated only one accumulation model. The model was 
based on Holsworthy Barracks area, which presented similar vegetation to the 
one used to calibrate the original accumulation curve by Gould et al (2011). 
Inevitably, this causes inaccuracies for different vegetation types and the 
quantitative results presented here should be used with caution. Therefore, as a 
follow up, it is recommended the design of different models calibrated with fuel 
load post-fire accumulation data collected for specific forest types. 
 
Additionally, the computation of vegetation lines that are specific for different 
vegetation cover types may reduce inaccuracies. For example, the results 
shown here cover well open to dense woodlands and forests, but do not 
represent well grasslands, whose values might not be valid. 
 
However, in order to calibrate vegetation lines for different fuel types, study areas 
with samples of these fuels that remain undisturbed for several years must be 
identified. In Australia, locating such areas is challenging due to the variability of 
fuels deriving from frequent fires and it would require fuel cover maps with at 
least yearly repetition. 
 
Better estimating spatial and temporal variations of fuel load is critical for fire 
prevention and response. In this regard, the fuel load maps generated in this 
report are vitally important for strategic planning. Additionally, this information is 
useful to locate containment lines and help with the firefighting strategies (e.g. 
to locate sites free of trees to winch specialist firefighters in, to try to pick the 
easiest line to construct walking tracks or highlighting low fuel loads areas where 
it is safer to intervene and relatively easier to put off a fire). This information can 
equally be used as part of pre-season planning when fire agencies and land 
management departments formulate their seasonal outlook for fire and map at- 
risk areas as well as for planning and undertaking prescribed burns. 
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