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CHAPTER 3 – COMPUTATION OF THE AUSTRALIAN 
NATURAL DISASTER RESILIENCE INDEX 
 
In this chapter 

Section 3.1 Reviews the development and use of composite 
indexes and methods for computing composite 
indexes. 

Section 3.2 Describes the rationale for, and the statistical 
computation of, the Australian Natural Disaster 
Resilience Index. 

Section 3.3 Describes the methods used to compute the 
typology of groups of SA2s with similar disaster 
resilience profiles. 
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3.1 REVIEW OF COMPOSITE INDEX USE AND METHODS 

3.1.1 History of composite indices 

Santos et al. (2014) locate the origins of the concept of a single number 
representing the state of a complex system to the period after World War 2, 
when national accounting was developed to enable evaluation of the 
performance of the economy.  It was believed at this time that social well-
being would be improved by economic growth, and this could be measured 
by GNP per capita.  By the 1970s, and with persistent poverty despite the period 
of postwar prosperity and economic growth, there was growing acceptance 
that additional indicators of unemployment, poverty and inequality would be 
needed to characterise levels of economic development and social well-
being. 

From this time, some researchers and policy makers began to propose ways of 
combining these multiple indicators into a single index.  Indices included: an 
index of socio-economic development proposed by the United Nations 
Research Institute for Social Development (McGranahan et al.1972), a Physical 
Quality of Life Index proposed by Morris (1978), the Index of Social Progress 
proposed by Estes (1984) and the Human Suffering Index proposed by Camp 
and Speidel (1987).  While these indices received some scrutiny, it was not until 
the publication of the Human Development Index (HDI) by the United Nations in 
1990 that the methods of composite index construction began to be studied in 
detail.  It appears that the HDI’s role in significant funding allocation decisions, 
such as in United Nations aid and economic development programs, resulted in 
the methods of computation of the index coming under intense scrutiny, 
revealing many methodological flaws (see Periera and Mota 2016).  By the end 
of the second decade after the publication of the HDI, the methodological 
issues inherent in the construction of composite indicators were well understood 
(OECD 2008; Kovacevic 2010).  These issues included the selection of indicators, 
normalisation or standardisation of indicators and weighting and aggregation 
of indicators to form a composite index.  A number of changes to the HDI 
methodology were made in response to the issues raised, most notably a 
change from arithmetic to geometric aggregation of indicators in 2010. 

Studies of the vulnerability of communities to climate change emerged in the 
mid-1990s and, within a decade, indicators of vulnerability and adaptive 
capacity were being proposed as a means of informing funding allocation 
decisions, such as under the United Nations Framework Convention on Climate 
Change (Agder et al. 2004).  In the following decade, reviews and critiques of 
the methods of calculating climate change vulnerability indices were published 
that ranged from scathing (Füssel 2009) to mildly cautionary (Baptista 2014).  
The former author referred to mathematically flawed procedures in the 
calculation of composite indices and argued that composite indicators should 
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not be used as a basis for allocating program funding.  Barnett et al. (2008) 
drew similar conclusions about the Environmental Vulnerability Index.  Rowley 
and Peters (2009) showed that the weighting and aggregation issues in 
composite index construction also applied in Life Cycle Assessment. 

From 2000 onwards, increasing numbers of proposals for composite indices as 
measures of social vulnerability to natural hazards were proposed (see, for 
example, Pelling and Uitto 2001; Cutter et al. 2000; Cutter et al. 2003 and 
Chakraborty et al. 2005).  During this period composite indices of resilience to 
natural hazards or disasters were also proposed, so that by 2016, Beccari (2016) 
was able to locate 106 distinct frameworks for calculating composite indices of 
generic vulnerability or resilience to natural hazards, published between 
January 1990 and March 2015.  New composite indices also continued to be 
proposed in the human development field during this period, with Yang (2014) 
cataloguing some 101 indices that have been proposed since the HDI in 1990. 

Beccari (2016) found that the great majority of resilience and vulnerability 
frameworks (some 87 out of 106) were hierarchical, with simple arithmetic or 
geometric averaging of indicators to form a composite index.  Indexes using 
Principal Components Analysis (PCA) are included in the 87, since the scores on 
principal components are also constructed additively.  The body of work on 
simple composite indices for vulnerability or resilience to natural hazards has 
largely ignored the methodological issues raised over a period of several 
decades in the human development and climate change literature.  Gall 
(2007), in her comparative evaluation of indices of social vulnerability to natural 
hazards, concluded that compensability (one of the main methodological 
issues) was a hidden and underestimated problem.  Only 19 per cent of the 
proposals for composite indices of disaster resilience or vulnerability catalogued 
by Beccari (2016) acknowledged the existence of these methodological issues, 
and only one proposal undertook a comprehensive sensitivity analysis. 

3.1.2 Methodological issues 

Methodological issues in the construction of composite indices have been 
extensively discussed and/or analysed in a number of different disciplines, 
including: 

• environmental condition (Ebert and Welsch 2004; Rowley et al. 2012); 
• sustainability (Hudrlikova and Kramulova 2103); 
• life cycle analysis (Rowley and Peters 2009); 
• climate change vulnerability and resilience (Füssel 2009; Baptista 2014); 
• environmental vulnerability (Barnett et al. 2008); 
• international development and/or progress comparisons (Cherchye et 

al. 2007; Munda and Nardo 2009; Natoli and Zuhair 2011; OECD 2008; 
Salzman 2003; Tarabusi and Guarini 2013; Zhou and Ang 2009); 

• human development, quality of life (Kovacevic 2010; Mazziotta and 
Pareto 2013a; 2013b; 2016a; Pereira and Mota 2016); 
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• poverty, economic vulnerability, economic development (Guillaumont 
2009; De Muro et al. 2011); 

• social vulnerability (Rygel et al. 2006); 
• health economics (Jacobs et al. 2004; Vidoli et al. 2015); 
• financial analysis (Marozzi and Santamaria 2007); 
• multi-criteria decision analysis (Munda 2012a; 2012b); and, 
• GIS based multi-criteria decision analysis (Malczewski 2000; 2006a; 2006b; 

Heinrich et al. 2016). 

A number of methodological studies of composite indices are relevant to two 
or more of the disciplines listed above (e.g. Gall 2007; Munda 2012a; Paruolo et 
al. 2013).  There are methodological issues in the construction of composite 
indices associated with each of the steps in the construction process, with 
much of the methodological literature being concerned with weighting and 
aggregation. 

3.1.2.1 Functional form, construct validity and content validity 

Functional form refers to the nature of the relationship between an indicator 
and the conceptual entity it is believed to represent.  For example, resilience 
within a geographical area might be affected by median weekly family 
income in that area.  If the functional form is a simple linear relationship then an 
area with a median weekly family income of $1,000 is believed to have twice 
the resilience of an area where the median weekly family income is $500.  
Functional form is rarely discussed in composite index studies (but see Salzman 
2003).  In most composite indicator studies, a simple linear functional form is 
assumed, given the absence of either theory or empirical evidence to the 
contrary. 

Where a composite index incorporates reflective measurement models (see 
Section 3.1.2.6), the concept of construct validity used in psychological and 
sociological research is transferable to composite indicators.  An indicator that 
does not have construct validity will have no relationship with resilience.  The 
concept of content validity is also transferable.  A composite index with 
content validity will be comprised of indicators for all the factors that might 
affect resilience. 

3.1.2.2 Populations, samples and outliers 

Many composite index methods proposed in the literature, or in use, involve 
some discussion or treatment of outliers.  Outliers are values taken by a variable 
that lie far from the majority of values for that variable.  Formal definitions of 
outliers implicitly (e.g. Osborne and Overbay 2004) or explicitly (e.g. Marriott 
1990) involve a sample drawn from a population.  In this situation, the presence 
of outlying values beyond the tails of the sampling distribution signals the 
possibility of errors in the data collection process, from mis-specified sample 
frames, faulty drawing of samples, through to key stroke errors in data entry.  
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The source of error should be investigated and, if possible, corrections made to 
the data.  Remaining outliers may still be a cause for concern.  They may 
violate distributional assumptions upon which parametric inferential statistics 
depend.  However, if removed, this may inflate Type 1 error rates (Bakker and 
Wicherts 2014).  Transformations, such as taking logs of values, and substitution 
of parametric methods with robust methods, are the preferred options for 
dealing with retained outliers (Osborne 2002; Osborne and Overbay 2004). 

In the composite index literature, there have been detailed discussions of outlier 
issues by Foa and Tanner (2012), Heinrich et al. (2016), Hudrlikova and 
Kramulova (2013), Hudrlikova (2013), Jacobs et al. (2004), Mishra (2008), OECD 
(2008), and Vidoli et al. (2015).  Of frequent concern in much of this work is the 
impact of the treatment of outliers on composite indices.  However, very little 
attention is paid to how outliers are to be understood in data that is used to 
construct composite indices.  Crucial to this is the distinction between samples 
and the population from which samples are obtained.  The treatment of outliers 
in composite indices based on sample data draws on inferential statistics, 
where outliers are regarded as values that lie outside the tails of the sampling 
distribution and therefore are suspected to be measurement or data 
processing errors.  In this case, there are valid grounds for deleting the 
suspected erroneous data from the composite index construction process. 

However, in many cases, such as indices comparing the performance of 
countries in some area of interest, or spatial indices based on Census data, 
there is no sample.  The data from which the index is being constructed 
represents the total population.  Further, where the data is from official sources 
such as national accounts or an official census of residents, there are many 
precautions and checks undertaken in the gathering of data, so that the 
probability of erroneous data is very low.  In this situation, the application of 
outlier thresholds from inferential statistics makes little sense.  Extreme values 
beyond these thresholds are real values and should be incorporated in some 
way in calculating composite indices.  Rather than abandoning valid data with 
the misguided application of outlier procedures from inferential statistics, it is 
preferable to devise robust indices that are resistant to the effects of extreme 
values among the indicators that comprise the index. 

This is particularly the case where the object is to arrive at the spatial distribution 
of a composite index.  For example, there are 2104 Statistical Area Level 2 (SA2) 
areas in Australia for which the Australian Bureau of Statistics publishes values of 
the Socio-Economic Indexes for Areas (SEIFA) index, and these give an almost 
complete spatial coverage of the country (ABS 2011; 2013).  If a data set for 
these 2104 SA2s is constructed using 33 common demographic indicators, and 
these are scanned for outliers using as a threshold absolute values of the z-
scores greater than 3.29 (a common univariate outlier threshold; Tabachnick 
and Fidell 2007), then some 237 SA2s, or 11.3 per cent of the total number of 
SA2s in Australia would be discarded as outliers.  This does not include 
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additional SA2s that might be identified as multivariate outliers.  The example 
shows that the misguided application of outlier thresholds from inferential 
statistics could seriously impair the spatial coverage of a composite index 
calculated from these 33 demographic indicators. 

The alternative is to use aggregation methods that are robust to malformed 
indicator distributions and extreme indicator values.  A number of robust 
transformations and aggregation methods have been proposed, including: 

• standardising indicators by subtracting the median and dividing by the 
median absolute deviation (Aeillo and Attanasio 2004); 

• for composite indices based on Principal Components Analysis (PCA), 
using robust versions of PCA (Mishra 2008; Vidoli et al. 2015); 

• summation of rankings (OECD 2008); 
• number of indicators above and below a benchmark (OECD 2008); 
• winsorisation and log transformations of indicators (Saisana and Phillips 

2012); and, 
• modifications to the Benefit of Doubt approach (Vidoli et al. 2015). 

When the dataset for composite index calculation is a complete population, 
these robust methods offer the possibility of avoiding the unwarranted deletion 
of considerable numbers of records as “outliers”. 

A further example of the failure to appreciate the difference between analysis 
of samples and analysis of the complete population is to be found in a number 
of natural hazards composite index studies.  In discussing the question of 
selection of an appropriate number of components in principal components 
analysis, Schmidtlein (2008), Tate (2012) and Baptista (2014) all refer to parallel 
analysis as an appropriate method.  However, this is a Monte Carlo method to 
obtain the sampling distributions of the eigenvalues of a PCA, and to retain 
components with eigenvalues greater than some chosen inferential threshold.  
The approach is meaningless if applied to data that represents the whole 
population, being appropriate only where the object is to generalise from a 
sample of geographical units to the complete population as to the number of 
retained components. 

3.1.2.3 Transformations of indicators – normalising 

The indicators that comprise a composite index are frequently transformed for 
two reasons: to obtain an indicator distribution that meets the assumptions 
required by a statistical procedure such as PCA; and/or to give indicators equal 
influence in a simple additive composite index (the most common aggregation 
method for composite indices). 

Before proceeding, it is necessary to clarify a number of terms that are used 
inconsistently in the indicator literature. 
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Normalise: this can be used to refer to transformations that bring a non-
normal distribution closer to a normal distribution (e.g. von Hippel 2003), 
or it can refer to rescaling a variable such that it has a range of 0 – 1 
(OECD 2008). 

Standardise: this can refer to converting the values of a variable to z-
scores (OECD 2008; Schmidtlein et al. 2008), or to rescaling to a range of 
0 – 1 (Gall 2007). 

There appears to be a belief among some authors (e.g. Jacobs et al. 2004; 
Hudrlikova and Kramulova 2013), that converting the values of a variable to z-
scores: 

•  “… imposes a standard normal distribution onto each indicator…” 
(Jacobs et al. 2004, p.37), or 

• “…converts all indicators to a common scale in which they are assumed 
to have a normal distribution” (Jacobs et al. 2004, p.37), or 

• “Standardisation (or z-score method) converts data in order to get 
normal distribution.” (Hudrlikova and Kramulova 2013, p.38). 

This is not the case: converting an indicator to z-scores simply rescales it to have 
a mean of 0 and a standard deviation of 1.  A skewed indicator will have 
exactly the same skewness, and a similar departure from normality, after 
conversion to z-scores.  Similar inconsistencies in terminology in the composite 
index literature have been noted by Heinrich et al. (2016). 

In this report, normalise means any transformation of an indicator that aims to 
bring its distribution closer to a normal distribution.  Rescaling means a change 
to the range of an indicator, and/or its mean and standard deviation, without 
altering the shape of its distribution. 

Normalising to reduce excessive skewness and kurtosis is a step in many 
published composite indices (e.g. the Global Innovation Index and the 
Environmental Sustainability Index; Yang 2014), and is recommended in 
methodological guides (e.g. OECD 2008; Kovacevic 2010; Hudrlikova 2013).  
There are two reasons for normalising maldistributed indicator descriptions.  
Firstly, if an indicator distribution is highly skewed, then this has serious 
consequences when simple additive aggregation is used to form composite 
indices.  This can be readily demonstrated with the simple example shown in 
Figure 3.1.  An unskewed and a skewed indicator are rescaled to range 0 – 1, 
and added to form a composite index which is also rescaled to range 0 - 1.  This 
is a very common approach to composite index construction.  The bottom 
panel in Figure 3.1 shows the impact on the composite index of shifts in the 
values of each of the indicators from their medians to their first and ninth decile 
values.  It can be seen that a shift in the value of skewed indicator from its 
median to either its first or ninth decile value results in a much smaller shift in the 
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composite index value.  With extreme skewness, an indicator can have almost 
no impact on the composite index. 

Similar problems will occur if the bulk of raw indicator values lie in a narrow 
range, with a few cases in both left and right tails of the distribution – a 
leptokurtic distribution.  This is similarly illustrated in Figure 3.2.  A change from 
the median to the third or seventh decile value for the normally distributed 
indicator has a much greater impact on the composite index value than does 
an equivalent change in the leptokurtic indicator. 

When long tailed distributions are rescaled to a range of 0 to 1 (min-max 
rescaling – see Section 3.2.7), the indicator values for geographical units at one 
end of the distribution (skewed distribution), or those for the geographical units 
in the middle of the distribution (leptokurtic distribution), are compressed much 
more than would be the case in the absence of the long tails. 

It is for these reasons that, if wholly or partially additive aggregation methods 
are used to calculate composite indices, then raw indicators need to be 
transformed to reduce skewness, overly positive kurtosis and excessive numbers 
of outliers.  If not done, then the relative contribution of indicators to the 
composite index is being affected by the combination of indicator distributions 
and min-max rescaling. 
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Figure 3.1: Histograms of an unskewed indicator, a skewed indicator and the resulting 
composite index.  For the unskewed indicator, the red dot and arrows show the 
positions of the median and first and ninth decile values.  For the skewed indicator, the 
positions of the same quantiles are shown similarly in blue.  For the composite index, the 
dots and arrows show the changes in the index as each indicator in turn is changed 
from its median value to its first decile or ninth decile value. 
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Figure 3.2: Histograms of a normally distributed indicator, a leptokurtic indicator and the 
resulting composite index.  For the normally distributed indicator, the red dot and 
arrows show the positions of the median and third and seventh decile values.  For the 
leptokurtic indicator, the positions of the same quantiles are shown similarly in blue.  For 
the composite index, the dots and arrows show the changes in the index as each 
indicator in turn is changed from its median value to its third decile or seventh decile 
value. 
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The second reason for the use of normalising transformations of indicators is 
when PCA is to be used either as a means of dimensional reduction or as a 
means of deriving weights when a composite index is calculated by weighted 
addition.  PCA is sensitive to substantial departures from normality and the 
presence of outliers.  Depending on the shape of the original indicator 
distribution, transformation with log or power functions may bring the 
distribution closer to a normal distribution. 

3.1.2.4 Transformations of indicators – rescaling 

The need for rescaling of indicators originates in the intuition when simple 
additive aggregation is being used, that it would be undesirable to add 
indicators that vary greatly in magnitude.  For example, if one indicator is the 
percentage of people with a rare disease, this might vary between 0.001 and 
0.005 per cent.  An accompanying indicator for forming a composite index by 
addition, might be the annual expenditure on the detection and treatment of 
this disease.  This indicator might vary between $500,000 and $1.5million.  
Obviously, an additive composite index from these two indicators will be 
dominated by annual expenditure.  Rescaling of indicators followed by 
additive aggregation is a widely used method of index construction, although 
there are some aggregation methods that do not require rescaling (see Section 
3.1.2.7). 

Two forms of rescaling that are widely used are min-max rescaling and what, in 
the interests of clarity, will be termed mean and standard deviation (MSD) 
rescaling.  In the former, the minimum value is subtracted from each value of 
an indicator, and the result divided by the range of the indicator.  In the latter, 
the mean is subtracted from each value of an indicator, and the result divided 
by the standard deviation.  MSD rescaled values are equivalent to z-scores.  As 
noted in Section 3.1.2.3, MSD rescaling does not bring an indicator distribution 
closer to a normal distribution. 

A number of authors have drawn attention to the fact that the method of 
rescaling used will affect the relative positions of countries or regions as scored 
on a composite index.  For example, Hudrlikova and Kramulova (2013) tested a 
range of rescaling methods, including min-max rescaling and MSD rescaling 
and found the relative position of Czechoslovakian regions on a composite 
index of sustainable development varied according to the rescaling method 
chosen.  Cherchye et al. (2007) argued that this aspect of composite indices 
essentially rendered them meaningless: 

In a well-defined mathematical sense, a composite indicator is not 
meaningful when the resulting ordering changes if the original data are 
transformed in such a way that their informational content is not 
fundamentally altered.  In practice, however, most composite indicators are 
prone to precisely this deficiency. [emphasis in original] 
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Similar criticism was levelled at environmental composite indices by Ebert and 
Welsch (2004): 

The popular procedure of normalizing [i.e. rescaling] data before 
aggregating them does not provide a solution to the non-comparability of 
the data and the ensuing ambiguity of orderings.  Rather, the arbitrariness of 
the normalization rules introduces additional ambiguities. 

A number of sensitivity or uncertainty analyses examining the effect of 
methodological uncertainty upon composite indices have concluded that the 
effect of choice of rescaling method is relatively small, compared to choices 
around weighting and aggregation (Tate 2012; Saisana et al. 2005).  
Nevertheless, the fact that choice of rescaling method is capable of changing 
a composite indicator suggests that some care in making this choice is 
warranted (Baptista 2014; Tate 2012; Cherchye et al. 2007). 

Of the 105 disaster risk, vulnerability and resilience composite indices reviewed 
by Beccari (2016), where the rescaling method was described: 

• 23 did not use rescaling as the indicators in their raw form were 
expressed in similar scales, or the aggregation method did not require 
rescaling; 

• 23 used min-max rescaling; 
• 19 used MSD rescaling; 
• 17 used assignment to categories; 
• 2 used ranking; and, 
• 21 used other or mixed methods (Beccari 2016). 

Beccari’s review shows that, of the rescaling methods in use that retain ratio 
indicators (rather than converting them to ordinal or categorical indicators) 
min-max rescaling and MSD rescaling are the most commonly used. 

If the main goal of rescaling is to ensure indicators are within the same range of 
values, and indicators have been transformed to remove excessive skewness 
and leptokurtosis and in the process outliers have been reduced or removed, 
then then the argument that MSD rescaling is preferable when there are outliers 
(Baptista 2014) does not hold.  Furthermore, MSD rescaling, because it entails 
the division by the standard deviation of the indicator, introduces unnecessary 
variation into the rescaled indicator that is a function of the distributional 
qualities of the indicator.  For example, if two indicators had exactly the same 
range, then min-max rescaling would not alter their relative contributions to a 
composite index.  If at the same time, the indicators had different standard 
deviations, then MSD rescaling would inflate or deflate the contribution of one 
or other indicator to a composite index, something that is manifestly 
undesirable for indicators that have exactly the same range. 
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It should be noted that some care has to be taken with any form of rescaling 
for composite indices that are, or are expected to be, measured over time.  For 
min-max rescaling, indicators should not be rescaled in each time period using 
the minimum and maximum values that pertained at that time period, since this 
distorts the relativity of the indicator between each pair of consecutive time 
periods.  Rather, the maximum and minimum values across the whole time span 
of the indicator should be used in the rescaling calculation.  Necessarily, this 
means that the published rescaled values of the indicator for previous periods 
will change if the value of the indicator in the latest time period has moved 
outside of the previous range of values.  This issue is examined in some detail by 
Heinrich et al. (2016). 

3.1.2.5 Indicator reversal 

Where an indicator is believed to have a negative relationship with the 
concept it is intended to capture, it is necessary to reverse the direction of the 
indicator.  In some studies (Salzman 2003; Cutter et al. 2010; Baptista 2014; Sessa 
2016), indicator reversal is accomplished by a reciprocal transformation that 
changes the negative association to a positive association.  However, this form 
of reversal is not linear and can change the skewness of the indicator 
distribution.  As discussed in Section 3.2.7, skewed indicator distributions have 
undesirable effects on composite indices constructed by additive aggregation.  
To illustrate with a simple example, a random sample of 1,000 values from a 
normal distribution with a mean of 10 and standard deviation of 2 has a 
skewness close to zero.  Taking the reciprocal of these values produces a 
distribution with a skewness of 3.198.  Min-max rescaling of the reciprocal values 
yields a distribution that still has a skewness of 3.198. 

A preferable (and linear) method of indicator reversal is to subtract each value 
of the min-max rescaled indicator from 1.  This maintains the absolute value of 
the skewness of the distribution.  If working with an un-rescaled indicator, then 
the indicators should be subtracted from their maximum value. 

3.1.2.6 Correlation between indicators 

The correlation between indicators is frequently used in the construction of 
composite indices as a criterion for choosing among indicators for inclusion, i.e. 
indicators that are highly correlated with other indicators are regarded as 
redundant and can be excluded from the calculation of the composite index.  
The approach taken ranges from simple subjective thresholds for exclusion (e.g. 
Cutter et al. 2010; Malczewski 2000; Salzman 2003; OECD 2008), to more 
detailed correlation analysis (e.g. Sherrieb 2010), to PCA.  Beccari (2016) lists 
some 17 studies that used PCA, mostly following the approach established by 
Cutter et al. (2003). 
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There are a number of issues around indicator correlation that receive relatively 
little attention in the composite index literature, but which deserve careful 
consideration in the development of composite indices.  At the most basic 
level, there is the question of the intended or implied direction of causation 
between indicators and a composite index.  Structural equation modelling 
distinguishes between reflective and formative measurement models (Fornell 
and Bookstein 1982; Edwards and Bagozzi 2000).  In reflective measurement 
models, causation flows from a hypothesised theoretical construct to a number 
of indicators, e.g. locus of control is a hypothesised psychological trait which 
affects people’s beliefs about the extent to which they can control the course 
of their lives.  It also affects how they respond to certain questionnaire items 
about their control.  In formative measurement models, causation flows from a 
chosen set of indicators to a hypothesised construct, e.g. various demographic 
indicators such as proportion of people over 65 are believed to influence the 
level of a hypothetical construct such as disaster resilience. 

In terms of measured indicators that are aggregated in some way to give a 
measure of a hypothesised construct, formative and reflective measurement 
models are very similar (Table 3.1).  However, the difference in direction of 
causation has important implications for the transfer of statistical techniques 
between fields of study.  This applies particularly to the interpretation of 
correlations between indicators and techniques such as factor analysis and 
Cronbach’s alpha (Cronbach 1951).  Cronbach’s alpha varies between 0 and 
1, with higher values for higher levels of correlations among items.  It is widely 
used as a measure of reliability and internal consistency in psychometric scales 
(i.e. with reflective measurement models), although it is by no means universally 
accepted as a good measure (see, for example, Tavakol and Dennick 2011).  
Higher correlations among items suggests that their values are all being 
affected by the latent hypothetical construct of interest.  As pointed out by 
Christopherson and Konradt (2008), while factor analysis and Cronbach’s alpha 
are important tools in interpreting the correlation among indicators in reflective 
measurement models, they are essentially meaningless when applied to 
formative measurement models (i.e. all composite indices of resilience or 
vulnerability). 

  



AUSTRALIAN NATURAL DISASTER RESILIENCE INDEX VOLUME II – TECHNICAL REPORT | REPORT NO. 493.2019 
 
 
 

 3-14 

Table 3.1: Examples from different fields showing the equivalence of scales, indices and 
rankings, together with the differences in direction of causation. 

Field Units of 
analysis 

Assessment 
variables 

Aggregate 
measure 

Direction of 
causation 

Disaster 
resilience 

Geographic 
regions, census 
tracts 

Demographic, 
economic, 
infrastructural 
indicators 

Score on disaster 
resilience index 

From indicators 
to index 

Psychology Individuals Questionnaire item 
responses 

Score on 
psychometric scale 
representing 
theoretical construct 

From construct 
to item 
response 

Health 
management 

Hospitals Key performance 
indicators 

Score on hospital 
performance index 

From indicators 
to index 

Human 
development 

Countries Demographic, 
economic indicators 

Score or ranking on 
development index 

From indicators 
to index 

Multiple criteria 
decision analysis 

Suite of decision 
options 

Criteria for rating 
options 

Score or ranking of 
options 

From criteria to 
score or ranking 

Life cycle 
analysis 

Consumer 
products 

Environmental and 
health impacts 

Score on life cycle 
impact index 

From impacts 
to index 

 
In formative measurement models, such as composite indices of disaster 
resilience, higher correlations among items cannot be interpreted in this way.  
At best, the higher correlations show that the indicators believed to influence 
resilience just happen to be correlated with each other.  Some indicators may 
in fact be redundant.  However, instances can be found in the composite index 
literature where Cronbach’s alpha is used, or even recommended, as a means 
of determining the internal consistency of indicators, despite these being 
formative measurement models (e.g. OECD 2008; Ross 2014). 

Factor analysis assumes a latent set of factors that are responsible for the values 
of the observed variables (i.e. a reflective measurement model with causation 
flowing from the latent constructs to the measured indicators).  Factor analysis 
applied to a formative measurement model, such as a disaster resilience index, 
can yield no meaningful interpretation.  Any groups of correlated indicators are 
due to the analyst’s choice of indicators and cannot say anything about the 
multidimensionality or otherwise of the hypothetical construct, disaster 
resilience. Nevertheless, a number of composite index studies refer to factor 
analysis as an option for dealing with correlation between indicators.  These 
include: Bao et al. (2015); Jacobs et al. (2004); Kovacevic (2010); and, OECD 
(2008). 

PCA is a multivariate statistical technique related to factor analysis.  However, it 
does not treat the values of variables as a manifestation of a number of latent 
constructs.  Rather, it is simply a method to reduce a large number of variously 
correlated indicators to a smaller number of uncorrelated components, each 
of which is a variously weighted sum of the original indicators.  As Beccari (2016) 
notes, this approach has been widely used in the construction of composite 
indices for disaster resilience and vulnerability. 
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However, it appears to be rarely appreciated in such studies, if at all, that the 
components obtained from PCA are weighted sums of the (standardised) 
original indicators and, as such, suffer from the compensability issue.  It is implicit 
in these weighted sums that two units (SA2s in the current study) can end up 
with the same score on a component, due to low values on some indicators 
compensating for high values on other indicators.  The compensability implicit 
in composite indices has attracted much criticism, and the same criticism can 
be applied to the components from PCA that are used as a parsimonious set of 
indicators to replace a much larger set of original indicators.  So a composite 
index constructed hierarchically of sub-indices that are derived from PCA will 
be exposed to compensability issues at several levels. 

An alternative to the use of PCA is simply to exclude indicators that have high 
correlations with other indicators (e.g. Cutter et al. 2010; Malczewski 2000; 
Salzman 2003; OECD 2008; Sherrieb 2010).  However, it is important to note that 
correlation between indicators does not necessarily imply redundancy.  
Mazziotta and Pareto (2016b) give the example of two indicators of health 
provision: hospital beds per 1,000 persons and hospital doctors per 1,000 
persons.  These two indicators are likely to be correlated, but one cannot 
substitute for the other.  A high level of hospital doctors would not compensate 
for a low level of hospital beds, since beds are needed for doctors to provide 
care.  Each indicator is, in fact, an enabling indicator for the other.  If, for 
example, hospital beds per 1,000 persons was dropped as an indicator, hospital 
doctors per 1,000 persons would be an inaccurate substitute, overestimating 
health provision whenever doctors was at a high level, but beds at a low level.  
Similarly, if a pair of indicators have a high negative correlation, then they are 
likely to compensate for each other if the aggregation is partly or fully additive.  
If one indicator is deleted, the remaining indicator will be an inaccurate 
substitute.  In this situation, it would be preferable to retain both indicators and 
use an aggregation function that allows a realistic degree of compensation. 

These examples demonstrate that suites of potential indicators cannot be 
simply culled with some chosen correlation threshold.  The nature of the 
hypothesised relationships between indicators and the concept represented by 
the composite index has to be considered.  As Hudrlikova (2013) notes, some 
correlations will be indicative of redundancy, and other correlations may 
involve non-compensatory indicators, as in the example above.  For this reason, 
indicator selection will always involve a trade off between redundancy if some 
correlated indicators are retained and loss of information if they are not 
(Mazziotta and Pareto 2013a).  On the other hand, if a suite of chosen 
indicators is largely uncorrelated, and there is good evidence to believe each 
indicator has an independent influence on the latent construct represented by 
the composite index, then the lack of correlations gives some confidence in the 
content validity of the index (see Section 3.2.2). 
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A further consideration with correlated indicators is their impact on the 
composite index and their apparent importance.  Paruolo et al. (2013) 
demonstrate that, if the correlation between an indicator and the composite 
index is taken as a measure of the importance of that indicator, then the 
apparent importance of an indicator that has correlations with other indicators 
is inflated.  This problem can be corrected for by weighting (e.g. OECD 2008), 
although Saisana et al. (2005) point out that in the mathematically equivalent 
field of multi-criteria decision analysis these correlations would be regarded as 
a feature of the decision problem that may involve non-compensatory 
relationships between criteria, and would not be regarded as problematical. 

3.1.2.7 Weighting and aggregation 

Weighting and aggregation is the area of composite index methodology that 
has received the most attention in the literature (Hudrlikova 2013).  Weighting 
issues revolve around giving expression in some way to the importance that 
individual indicators are believed to have in affecting the latent construct that 
is gauged by the composite index.  At the same time, it is necessary to avoid, or 
at least be aware of, any unintended weighting effects that are implicit in the 
aggregation methodology itself. 

Aggregation issues, in addition to unintended weighting effects, are mostly 
concerned with arriving at an index that somehow gives expression to the 
pattern of indicator values, without being unstable or misleading.  The central 
issue, widely discussed in the literature, is compensability between indicators, 
i.e. whether or not low values of some indicators can be compensated for in 
the aggregation process by high values of other indicators.  A further 
consideration in weighting and aggregation methodology, that has become 
relevant in recent times with the use of aggregation operators that allow for 
detailed prescription of levels of compensability between indicators, is the level 
of expert input required to model the compensability.  In general, methods that 
require extensive efforts by (possibly volunteer) experts are unlikely to be 
practicable. 

Finally, an enduring issue, despite great improvements in computer processing 
speeds, is the length of time required for aggregation calculations.  While the 
scoring of options in Multiple Criteria Decision Analysis (MCDA) is 
mathematically equivalent to constructing indices of resilience to hazards 
(Table 3.1), and so allows MCDA methods to be applied to the task of 
constructing resilience indices, the latter are far more computationally intensive 
than the former.  MCDA generally involves a small number of options to be 
evaluated and up to some tens of criteria, whereas mapping resilience on a 
national scale can involve several thousand geographical units and up to one 
hundred indicators.  Sophisticated non-compensable aggregation methods 
from MCDA may have prohibitively long calculation times when applied to a 
large number of geographical units and indicators. 
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Equal weighting 

Weighting can be carried out as a calculation stage separate from 
aggregation, or it can be implicit within an aggregation method.  Where 
weighting occurs as a separate operation, a simple and widely used approach 
is to use equal weights for each indicator (equivalent to not weighting at all).  
This is considered to be justified if there is no information as to the relative 
importance of indicators or sub-indices (e.g. Cutter et al. 2010).  Salzman (2003) 
considered that equal weights were justified since, despite their shortcomings, 
they were preferable to other options for setting weights, such as expert 
deliberation and PCA, which were even more problematical.  However, De 
Muro et al. (2011) point out that if equal weighting is followed by simple 
arithmetic averaging (a common procedure), then the apparently “neutral” 
assumption of equal weights disguises a strong assumption of perfect 
substitutability between indicators, i.e. indicators are fully compensable and 
low values of some indicators can be compensated for by high values of other 
indicators. 

Elicited weights 

Among weighting methods that involve the specification of weights, there are 
a number of types.  Following Hudrlikova (2013) and Baptista (2014), there are 
two broad groups of weighting methods: those that derive weights from the 
indicator data itself, and those that involve elicitation of additional information 
from experts or members of the public.  Among the latter are consultation with 
experts, discussions with stakeholders, surveys of public opinion, the budget 
allocation process, conjoint analysis and the analysis hierarchy process 
(Baptista 2014; Hudrlikova 2013; OECD 2008).  Despite the intuition that weights 
reflect the importance of individual indicators, whenever weights are used with 
simple additive aggregation of rescaled indicators, they amount to nothing 
more than the marginal rates of substitution between the indicators (Kovacevic 
2010). 

Weights from Principal Components Analysis 

The main method where weighting is separate from aggregation, and where 
weights are derived from the indicator data itself is PCA.  This has already been 
discussed in Section 3.1.2.6 in relation to reducing a large set of variously 
correlated indicators to a parsimonious set of uncorrelated components.  
However, PCA also features in composite index studies as a means of providing 
indicator weights to calculate scores on components (also termed pillars or 
dimensions).  The percentage of variance explained by each component is 
then used as a weight in aggregating the chosen number of components to 
form the composite index (OECD 2008).  Alternatively, the indicator weights in 
the first principal component are used in constructing a composite index 
(Salzman 2003).  However, as noted in Section 3.1.2.6, implicit in weighting by 
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PCA is the assumption that indicators are fully compensable in calculating 
component scores, and that the components themselves are fully 
compensable in calculating the composite index.  Once again, these weights 
amount to marginal rates of substitution between indicators or components 
and say little about their relative importance. 

Aggregation post-weighting 

Where aggregation is carried out as a procedure separate to, and following, 
the assignment of weights to indicators, simple summation or averaging is the 
most common approach.  However, as mentioned above, this method 
assumes full compensability between indicators.  Furthermore, as noted by 
Munda and Nardo (2009) and others, the trade-off ratio between indicators is 
assumed to be constant, regardless of the values of other indicators (i.e. 
preferential independence).  This amounts to assuming that there are no 
synergistic or antagonistic interactions between indicators (or between sub-
indices in a hierarchical composite index).  The assumption of full 
compensability and preferential independence has been seen as problematic 
by many authors, including Baptista (2014), Tate (2013), Hudrlikova (2013), 
Mazziotta and Pareto (2016a) and Natoli and Zuhair (2011).  Munda and Nardo 
(2009) reject simple additive aggregation and argue that non-compensatory 
aggregation must be used whenever weights are intended as importance 
measures and/or preferential independence cannot be assumed. 

While many composite index studies have ignored these undesirable aspects of 
simple additive aggregation, the problem has nontheless driven the search for 
non-compensatory aggregation techniques.  These techniques have been 
widely used in MCDA and many studies involve testing the application of 
MCDA non-compensatory or partially compensatory aggregation techniques 
with composite indices in other fields.  Examples include: 

• water resource management (ELECTRE III method; Chitsaz and 
Banihabib 2015); 

• finance (ELECTRE and preference disaggregation analysis; Doumpis and 
Zopounidis 2014); 

• farm forestry evaluation (ELECTRE II method; Jeffreys 2004); 
• materials science (MOORA method; Karande and Chakraborty 2012); 
• environmental management (ordered weighted averaging method; 

Malczewski 2006b); 
• industrial process engineering (MOORA method; Mandal and Sarkar 

2012); 
• regional economic development comparisons (Adjusted Mazziotta-

Pareto index and the Mean-min function; Mazziotta and Pareto 2015); 
• regional well-being comparisons (Mazziotta-Pareto index and weighted 

product method; Mazziotta and Pareto 2016a); 
• regional well-being comparisons (Choquet integral; Bertin et al. 2018); 
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• socio-economic development comparisons between countries 
(Condorcet method; Natoli and Zuhair 2011); 

• regional mapping of human development (ELECTRE TRI-C method; 
Pereira and Mota 2016); 

• international development comparisons (Adjusted Mazziotta-Pareto 
index; Sessa 2016); 

• international sustainability comparisons (Choquet integral; Cruciano et 
al. 2012); 

• vulnerability to climate change (Weighted Ordered Weighted Average 
method; Runfola et al. 2015); 

• governance comparisons in Africa (Mean-min function; Tarabusi and 
Guarini 2013); and, 

• regional poverty comparisons (generalised mean; Weziak-Bialowolska 
and Dijkstra 2014). 

It appears that the uptake of non-compensatory or partially non-compensatory 
aggregation methods in the natural hazards and disaster resilience field has 
been minimal.  Beccari (2016), in his review of 106 composite index 
methodologies in this field, found that almost all involved some form of additive 
aggregation.  This implies that most methodologies assumed full compensability 
and preferential independence. 

Aggregation and weighting combined 

The Benefit of Doubt (BOD) method derives weights endogenously from the 
indicators themselves, as part of the aggregation process.  The method is fully 
compensatory and the derivation of weights is built on the assumption that the 
values of indicators reflects how important the corresponding areas are 
considered to be (Cherchye et al. 2007).  For example, high values for health 
provision in a particular country is an indication that health provision is 
regarded as important in that country and public policy in health matters has 
created the high values.  Obviously, this assumption is unlikely to hold for small 
geographic units that do not have the authority to implement public policy, nor 
does it hold for domains that are generally outside the scope of public policy, 
such as age and sex distribution. 

3.1.3 Uncertainty and sensitivity analysis 

Uncertainty and sensitivity analysis treats composite index calculations as a 
model, where inputs are indicator values and the output is a value for a 
composite index.  The specification of the model (i.e. the method of composite 
index calculation) may include alternative options for various parts of the 
calculation, such as aggregation by arithmetic mean or by geometric mean.  
The values of indicators may be uncertain for a range of reasons: data derived 
from surveys with sampling uncertainty, random adjustments of small cells in 
Census data for confidentiality reasons, or spatial disaggregation from data at 
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one geographical scale to obtain indicators at another scale.  Likewise, if 
theoretical considerations give no guidance, then there may be uncertainties 
as to which index construction methods should be used.  Uncertainty analysis 
seeks to quantify how the uncertainties in indicators and index construction 
methods flow through the calculation to the composite index.  The results of 
uncertainty analysis enable the distributional characteristics of the index to be 
expressed with descriptive statistics such as the mean, standard deviation and 
quantiles. 

Sensitivity analysis aims to apportion the variance in the calculated index 
among the indicators and methodological choices.  Efforts to improve the 
robustness of the index can be directed to those indicators or choices that 
have the most effect on the uncertainty of the index, while indicators or 
methodological choices that have no effect on the index may be unnecessary, 
their omission leading to a more parsimonious index. 

Uncertainty and sensitivity analysis can build confidence that a composite 
index and its conceptual model are a valid reflection of reality, but this requires 
that the uncertainties in the indicators and methodological choices are 
honestly and plausibly specified, and the resultant uncertainty in the composite 
index is not so large as to render it useless.  As Leamer (1990) noted: 

Conclusions are judged to be sturdy only if the neighborhood of assumptions 
is wide enough to be credible and the corresponding interval of inferences is 
narrow enough to be useful. 

Beccari’s (2016) review of the 106 distinct frameworks for calculating composite 
indices of generic vulnerability or resilience to natural hazards, published 
between January 1990 and March 2015, found that only 20 studies contained 
any explicit analysis of uncertainty and sensitivity.  Just two studies estimated 
errors in the composite index scores and only one study employed global 
sensitivity analysis.  This latter form of sensitivity analysis systematically traverses 
the space of all uncertain inputs and was recommended in 2008 as good 
practice in composite index construction (OECD 2008).  The majority of the 
abovementioned 20 studies only examined the impact of changes to weights 
on the index.  Beccari (2016) concluded that the calls for greater use of 
sensitivity analysis as a counterbalance to the obvious flaws in composite index 
construction had largely gone unheeded in the field of disaster vulnerability 
and resilience. 

3.1.4 Conclusions 

The history of composite index development shows that the representation of a 
complex system with a single number has an irresistible allure.  The addition or 
averaging of rescaled indicators has had an intuitive appeal that has made it 
the most widespread of aggregation methods.  However, as composite index 
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construction has received increasing scrutiny, and an increasing number of 
fields have found applications for composite indices, their shortcomings are 
becoming better understood.  Issues of indicator rescaling and compensability 
have received increasing attention.  These problems have driven the search for 
non- or partially-compensatory aggregation methodologies where weights can 
validly be interpreted as measures of importance. 

Taking all the fields where composite indices are used, there is a proliferation of 
aggregation methods, although the range of methods currently used in natural 
disaster vulnerability or resilience is more restricted.  It is widely recognised that 
the choice of indicators and their rescaling, weighting and aggregation into an 
index carries a considerable degree of subjectivity (Baptista 2014, Barnett et al. 
2008, Cherchye et al. 2007, Cutter et al. 2010, Hudrlikova 2013, Mazziotta and 
Pareto 2015, OECD 2008, Schmidtlein et al. 2008, Sessa 2016, Tate 2013, Vidoli et 
al. 2015).  Recognising the inherently subjective nature of composite index 
construction, many authors emphasise that methodological choices should be 
made transparent and include the reasoning and context that led to these 
choices (Agder et al. 2004, Baptista 2014, Beccari 2016, Hudrlikova 2013, OECD 
2008, Tate 2012).  If possible, this should be formalised in uncertainty and 
sensitivity analysis. 
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3.2 INDEX CALCULATION 

This section provides an overview of the method of construction of the 
Australian Natural Disaster Resilience Index, describing the general logic behind 
the methods used and the approach taken in dealing with the methodological 
issues raised in the literature review in Section 3.1. 

3.2.1 Context 

The conceptual basis, design, structure and indictors used in the Australian 
Natural Disaster Resilience Index are described in detail in Chapter 1 and 2.  In 
brief: 

• the purpose is to construct and index that can be used to assess the 
state of disaster resilience in Australia, with a view to informing policy, 
planning and community engagement at all levels of government; 

• the conceptual basis of the Australian Natural Disaster Resilience Index is 
grounded in the disaster resilience literature, from which is drawn the 
idea that resilience is a function of coping capacity and adaptive 
capacity; 

• the literature further suggests that coping capacity is a function of social 
character, economic capital, emergency services, planning and the 
built environment, community capital and information access, while 
adaptive capacity is a function of governance and leadership, and 
community and social engagement; 

• the Australian Natural Disaster Resilience Index uses a top-down 
approach based on secondary data sources; 

• the geographic unit used in the Australian Natural Disaster Resilience 
Index is the Australian Bureau of Statistics Statistical Area Level 2 (SA2), a 
choice dictated by the national scale and data availability; 

• this conceptual basis requires a hierarchical structural design for 
composite index calculation, with two coping and adaptive capacity 
sub-indices and eight theme sub-indices, and, 

• the theme sub-indices are calculated from 77 indicators sourced from 
readily available secondary data. 

A number of methodological choices flow from this context, and from the issues 
discussed in Section 3.1. 

3.2.2 Functional form 

The functional form of relationships between indicators and sub-indices, and 
between sub-indices and Australian Natural Disaster Resilience Index, assumes 
monotonically increasing or monotonically decreasing relationships.  For 
example, an increase in unemployment always results in a decrease in 
resilience, regardless of the level from which the increase takes place.  A fall in 
unemployment from 60 to 50 per cent will result in an increase in resilience, as 
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will a fall from 20 to 10 per cent.  Generally, the state of knowledge in the 
current literature that guided the choice of indicators (see Chapter 2) is 
insufficient to specify functional form in any greater detail. 

3.2.3 Spatial coverage 

The data acquisition process aimed for maximum national coverage at the SA2 
level.  Overall, there are 2,214 SA2s across Australia.  The Australian Natural 
Disaster Resilience Index was computed for 2084 of these SA2s: 130 SA2s (6%) 
were excluded because they were areas of no or low population (e.g. national 
parks, ports, airports, industrial estates).  The theory and dimensions of disaster 
resilience are unlikely to apply to these 130 SA2s and any index calculation 
could be misleading.  Jervis Bay, Christmas Island, the Cocos-Keeling Islands, 
Lord Howe Island and French Island were also excluded from the index 
because the availability of indicator data for these areas was inconsistent.  
Details of the SA2s included and excluded from the index are provided in 
Chapter 1. 

3.2.4 Missing values 

Where a small number of SA2s were missing data for an indicator, the missing 
values were imputed using the bootstrap EM algorithm available in the ‘Amelia’ 
contributed R package (Honaker et al. 2011).  Each missing value was taken as 
the mean of ten iterations of the algorithm.  Six out of the eight themes in the 
Australian Natural Disaster Resilience Index had no missing values and this data 
was used in the imputation of missing values in the remaining themes.  The 
themes with missing values were governance and leadership and planning and 
the built environment.  Where an SA2 was missing data for a large number of 
indicators, the SA2 was omitted from the Australian Natural Disaster Resilience 
Index (see Section 3.2.3). 

3.2.5 Indicators and concordance to SA2s 

Across the eight themes, 77 indicators were used to compute the Australian 
Natural Disaster Resilience Index.  A detailed description of the indicators used 
in the index, and the source and treatment of each indicator is provided in 
Chapter 2. 

While a key principle of the index was to obtain data collected at the SA2 
resolution, some indicator data are only available for geographic units other 
than SA2.  These units included: SA3, SA4, Local Government Area, police 
districts and States/Territories.  The adjustments made to disaggregate data are 
outlined in Chapter 2. 
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3.2.6 Normalisation 

The development of Australian Natural Disaster Resilience Index does not allow 
for the extensive consultation that would be needed to establish the 
compensatory relationships between 77 indicators.  To account for these 
compensatory relationships in aggregation, it is expected that aggregation 
methods will be at best partially non-compensatory, and so partially additive.  
Under these circumstances, it was still necessary to reduce, where possible, the 
undesirable influence of highly skewed and/or leptokurtic indicator distributions 
on the composite sub-indices and indices where there is an additive 
component to the aggregation method. 

The indicator transformation process was carried out in two stages.  First, 
skewed indicators were adjusted to zero skewness with a power transform.  This 
was done by finding the power to which indicator values have to be raised to 
result in a distribution with zero skewness.  The process is illustrated using the 
indicator ‘% of labour force unemployed’ (Figure 3.3).  Untransformed, ‘% of 
labour force unemployed’ has a skewness of 5.10.  If each value of this 
indicator is raised to the power of 0.47, the skewness of the distribution of the 
transformed indicator is very close to zero. 
 

Untransformed Indicator (UI) 
 

 
 

Skew Transformed Indicator 
(STI = UI0.47) 

 

Figure 3.3: Histograms of the ‘% of labour force unemployed’ indicator before and after 
transformation. 

Untransformed, ‘% of labour force unemployed’ has a kurtosis of 89.20, which is 
strongly leptokurtic.  The transformed distribution is not as leptokurtic, having a 
kurtosis of 11.92.  No procedure for reducing leptokurtosis could be found in the 
literature so a method was developed based on the intuition that the 
distribution of indicator ranks is strongly platykurtic, so that further transforming 
indicator values by some linear combination of each skew transformed 
indicator (STI) value and its rank, could reduce kurtosis to near zero, while 
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retaining the relative positions of the indicator values.  This amounts to solving 
the equation: 

KSTI = minmax(STI) + coef * minmax(R), 

where: KSTI is the kurtosis and skew transformed indicator, 

  STI is a vector of skew transformed indicator values, 

  R is the rank of individual STI values, 

  coef is a multiplicative coefficient, and 

  minmax is a function that rescales a vector to range 0 to 1. 

If STI has negative kurtosis, then the transformation is not required, since a 
platykurtic distribution does not carry the same risk of introducing 
methodological artefacts under rescaling and aggregation. 

The resulting distribution of ‘% of labour force unemployed’ after finding the 
value of coef that reduces the kurtosis to zero is shown in Figure 3.4.  This 
distribution has a skewness of 0.04 – still close to zero – and a kurtosis of zero. 

 
Transformed to correct skewness and 
kurtosis 

 

Scatter plot of transformed and 
untransformed indicator values 

 
 

Figure 3.4: Histogram of the indicator ‘% of labour force unemployed’ after 
transformation for skewness and excessive leptokurtosis, and scatter plot of transformed 
and untransformed values. 
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All the Australian Natural Disaster Resilience Index indicators showed that the 
kurtosis transformation generally resulted in little change to the skewness.  The 
scatter plot in Figure 3.4, shows that the transformation of the indicator is a 
mildly non-linear transformation.  Comparing the ranks of SA2s for the 
untransformed and transformed indicator showed that the transformation 
preserves the rank order of SA2s. 

As discussed in Section 3.1.2.2, the outlier values of indicators based on the 
whole population should not be interpreted within an inferential statistics 
framework.  Nonetheless, outliers serve to warn of the presence or otherwise of 
long tailed distributions.  Using the threshold of absolute values of the z-scores 
greater than 3.29 (a common univariate outlier threshold – Tabachnick and 
Fidell 2007), the untransformed indicator ‘% of labour force unemployed’ has 10 
outliers so defined, while the transformed indicator has just one outlier. 

3.2.7 Rescaling 

It was anticipated that aggregation of indicators will be at least partially 
additive.  Under these circumstances, it was necessary to reduce where 
possible the undesirable influence of indicator distribution and scaling effects 
on the composite sub-indices and indices where there was an additive 
component to the aggregation method.  Consistent with this, and the 
discussion in Section 3.1.2.4, all indicators were rescaled to a range of 0 to 1. 

3.2.8 Indicator reversals 

Where the literature suggested that the relationship between an indicator and 
resilience was negative, the normalised and rescaled values of the indicator 
were subtracted from 1.  Full details of the reversal of indicators are provided in 
Chapter 2. 

3.2.9 Indicator redundancy, correlation and compensability 

While most resilience indicator studies, and indeed the composite index 
construction guidelines of OECD (2008), separate the examination of indicator 
correlations and redundancy from the aggregation phase, it was found useful 
in the construction of the Australian Natural Disaster Resilience Index to 
combine these two analysis stages.  The correlation between indicators 
determines the extent to which compensability issues have to be considered 
when they are aggregated.  For example, when two indicators are highly 
correlated, each geographical unit will tend to have similar values on those 
indicators (i.e. both high values or both low values).  In this situation, 
aggregation will not result in low values compensating for high values or vice 
versa, and simple addition or averaging is an acceptable method of 
aggregation, as is the case in reflective measurement models. 
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On the other hand, if a pair of indicators are uncorrelated then many 
geographical units will have a high value for one indicator and a low value for 
the other.  In a formative measurement model this lack of correlation may be 
desirable as being indicative of two independent factors that determine 
resilience.  However, the disparate values will compensate for each other if the 
indicators are aggregated by simple summation or averaging (the most 
common methods used), and these uncontrolled compensatory effects may or 
may not be acceptable in the context of the physical reality represented by 
the indicators. 

The steps followed in considering correlation, redundancy and compensability 
among Australian Natural Disaster Resilience Index indicators are described in 
the following sub-sections. 

3.2.9.1 Structural redundancy 

Structural redundancy occurs when an indicator has a direct linear relationship 
with another indicator, e.g. ‘% of persons over 75 years of age’ and ‘% of 
persons 75 years of age or less’.  Where structural redundancies occurred, 
generally as a result of a thorough first round of indicator collection, one or 
other of the structurally redundant pair of indicators was omitted.  The choice 
of which indicator to omit was guided by the resilience context of the 
indicators.  For example, with the two illustrative indicators above, ‘% of persons 
over 75 years of age’ might be considered to better represent the aspect of 
disaster resilience associated with older age, such as mobility and resources 
(see Chapter 2).  The complementary indicator would not capture these 
resilience relationships.  For this reason, the disaster resilience context would 
suggest the first indicator should be retained. 

3.2.9.2 Correlation and compensability 

The next step after eliminating any obvious structural redundancy was to 
examine the overall correlation structure.  This was done with a level plot with 
the indicators in the same order as in the sorted PCA loadings table.  An 
example is given in Figure 3.5. 
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Figure 3.5: Example correlation level plot for the economic capital theme indicators. 
 

The level plot serves two purposes.  First, it flags any high correlations between 
indicators.  These correlations require the indicator context be considered to 
decide whether or not one or other of the indicators should be omitted.  For 
example, if two indicators are structurally redundant one indicator can be 
omitted.  On the other hand, if two correlated indicators have an enabling 
relationship, as described in Section 3.1.2.6, then they are retained. 

Second, the level plot summarises the overall correlation structure of the 
indicator set and is an important input to the design of the aggregation 
strategy for forming a sub-index or index.  The aggregation strategy has to deal 
with an unavoidable trade-off in the aggregation process.  On the one hand, 
aggregation functions that allow a well-considered and nuanced accounting 
for the degree of compensability between indicators, are knowledge 
demanding and, for many aggregation functions, prohibitively computation 
intensive as the number of indicators increase.  On the other hand, 
aggregation functions that will handle larger numbers of indicators can only, at 
best, deal with compensability between indicators in an approximate way.  
Because of the exhaustive compilation of potential indicators from secondary 
data sources, most of the sub-indexes in the Australian Natural Disaster 
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Resilience Index comprised more than just a few indicators.  For this reason, it 
was necessary to choose a set of aggregation functions suited to the number 
of indicators to be aggregated and the extent to which it was feasible to 
specify compensatory effects between indicators. 

A second approach to examining the pattern of correlations among indicators 
was to regress each indicator in turn as a dependent variable on the remaining 
indicators as independent variables.  A high R2 for an indicator showed that it 
was well predicted by the remaining indicators and possible omission from the 
indicator set should be considered. 

3.2.10 Indicator aggregation 

3.2.10.1 Evaluation of aggregation functions 

The handling of compensatory effects when aggregating indicators can be 
divided into two basic approaches: either attempt to deal with all the 
compensatory effects in detail, or apply some generic adjustment to the 
aggregation that is commensurate with the extent to which compensatory 
effects are believed to be occurring. 

The amount of information needed to specify compensatory effects between 
indicators increases rapidly with the number of indicators.  For example, for two 
indicators A and B it is only necessary to specify the interaction between A and 
B.  However, for three indicators, A, B and C, it necessary to specify the 
interactions between A and B, A and C and B and C.  For n indicators, it is 
necessary to specify nC2 two way interactions.  Given the Australian Natural 
Disaster Resilience Index is a top-down index derived from available secondary 
data, with a limited budget that precludes eliciting information about indicator 
interactions from experts, aggregation with full specification of compensatory 
effects was confined to groups of three or two indicators, where it was possible 
to make plausible assumptions about interactions.  The aggregation of groups 
of four or more indicators, being prohibitively demanding of information about 
interactions, required a generic adjustment. 

The constraints on the choice of aggregation functions for the Australian 
Natural Disaster Resilience Index are as follows: 

• the index should retain as much information as possible from the 
indicators being aggregated; 

• the aggregation function should produce an index and not a ranking or 
categorisation; 

• the aggregation function should allow control of compensatory effects 
between indicators, either by detailed specification of indicator 
interactions or by a method of generic adjustment; 

• for generic adjustments, the aggregation function should allow the 
amount of adjustment to be varied; and, 
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• the aggregation has to be able to be computed within a reasonable 
time. 

The results of an evaluation of aggregation functions for the Australian Natural 
Disaster Resilience Index are shown in Table 3.2.  Each column in the table refers 
to one of the five constraints listed above.  As the Australian Natural Disaster 
Resilience Index is computed using the R package, the range of aggregation 
methods tested and evaluated were restricted to those that could be 
calculated from first principles in base R, and those available as functions in 
contributed packages. 

The Benefit of Doubt (BOD) method was omitted from the aggregation 
functions to be evaluated as it is premised on the idea that high values of an 
indicator for an individual country suggests that the associated policy area is 
considered important in that country.  Policy importance can be extended to 
relevant indicators and this can be used in deriving endogenous weights.  This 
concept is not relevant to disaster resilience at SA2 level since an SA2 does not 
have the authority to implement policy, and disaster resilience as a goal of 
public policy is a very recent phenomenon in Australia, so insufficient time has 
elapsed for the value of indicators to be related to policy initiatives. 

Three aggregation functions were rejected because of their long computation 
times: both forms of Kemeny Optimal Aggregation and ELECTRE 3 (Table 3.2).  
Eight aggregation functions were rejected as they provide a ranking or ordinal 
index, rather than a ratio index: sum rankings, above and below a benchmark, 
Borda’s rule, ELECTRE TRI, TOPSIS, RIM, MOORA and VIKOR (Table 3.2).  The linear 
sum or mean was rejected as an aggregation function because of its 
assumption of unlimited compensability.  The Mazziotta-Pareto Index was 
rejected since the algorithm that penalises the composite index for unbalance 
has no parameter to control the magnitude of the penalty. 

After rejecting these aggregation functions, five functions remain: the 
generalised mean (together with its special case, the geometric mean), the 
mean-min function, the WASPAS function, the ordered weighted average 
(OWA) and the discrete Choquet integral (Table 3.2).  Only one of the five 
functions, the discrete Choquet integral, allows for detailed specification of 
indicator interactions, and this was selected for use in the Australian Natural 
Disaster Resilience Index wherever groups of two or three indicators were to be 
aggregated and it was possible to make plausible estimates of the indicator 
interactions. 
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Table 3.2: Evaluation of potential aggregation methods to be used in the Australian 
Natural Disaster Resilience Index. 

Aggregation 
method 

Discards 
information? 

Produces 
a ratio 
index? 

Controls 
compensator
y effects? 

Compensation 
adjustable? 

Computatio
n time 

Aggregation methods from the composite index tradition (e.g. OECD 2008) 
Linear sum or 
mean 

No Yes No NA Negligible 

Sum rankings Yes No No NA Negligible 

Above and below 
a benchmark 

Yes No No NA Negligible 

Generalised mean 
(includes 
geometric mean) 

No Yes Generically Yes, via 
parameter 𝛽𝛽 

Negligible 

Mean-minimum 
function 

No Yes Generically Yes, via 
parameters 𝛼𝛼 and 
𝛽𝛽 

Negligible 

Mazziotta-Pareto 
Index 

No Yes Generically No Negligible 

Borda’s rule Yes No. No NA Acceptable 

Aggregation methods from information science (e.g. Dwork et al. 2001) 
Kemeny Optimal 
Aggregation with 
cross entropy 
Monte Carlo 
algorithm 

Yes No Generically No Prohibitively 
long 

Kemeny Optimal 
Aggregation with 
genetic algorithm 

Yes No Generically No Prohibitively 
long 

Aggregation methods from Multi-Criteria Decision Analysis (e.g. Figueira et al. 2005) 
ELECTRE 3 No No Specifically Yes, in 

prohibitively 
extensive detail 

Inconvenientl
y long 

ELECTRE TRI  No No Specifically Yes, in 
prohibitively 
extensive detail 

Acceptable 

WASPAS  No Yes Generically Yes, via 
parameter 𝝀𝝀 

Negligible 

TOPSIS  No No Generically Yes, via indicator 
weights 

Negligible 

RIM No No Generically Yes, via indicator 
weights 

Negligible 

MOORA No No Generically Yes, via indicator 
weights 

Negligible 

VIKOR  No No Generically Yes, via 
parameter 𝜈𝜈 

Negligible 

Aggregation methods from the theory of aggregation functions (e.g. Grabisch et al. 2011) 
Ordered weighted 
average (OWA) 

No Yes Generically Yes, via 
parameter orness 

Negligible 

Discrete Choquet 
integral 

No Yes Specifically  Yes, via fuzzy 
measure 

Negligible 

 

The remaining four functions all allow the control of compensatory effects by a 
generic adjustment and are suitable for aggregating four or more indicators.  
The functions also have a parameter or parameters that can be varied to 
control the extent to which compensatory effects are allowed in aggregation.  
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An aggregation function must be able to accommodate the full range of 
compensatory effects, from allowing uncontrolled compensation (as occurs 
with the arithmetic mean as an aggregation function), through to allowing no 
compensation (as occurs with the minimum as an aggregation function). 

The generalised mean, for a value of parameter 𝛽𝛽 equal to 1, is equivalent to 
the arithmetic mean, and so allows for uncontrolled compensatory effects if 
required.  However, for equivalence to the minimum function, the parameter 𝛽𝛽 
has to be set to -∞ which, for aggregation with limited compensatory effects, 
makes the choice of suitable values of 𝛽𝛽 difficult.  Further, the relationship 
between 𝛽𝛽 and the position of the generalised mean between the arithmetic 
mean and the minimum is strongly non-linear.  For this reason, the generalised 
mean was rejected as a generic aggregation function for the Australian 
Natural Disaster Resilience Index. 

The WASPAS function is equivalent to the geometric mean when 𝝀𝝀 = 0 and is 
equivalent to the arithmetic mean when 𝝀𝝀 = 1.  This means it is not capable of 
approaching the minimum function for an aggregation situation where no 
compensatory effects are to be allowed.  For this reason, the WASPAS function 
was rejected as a generic aggregation function for the Australian Natural 
Disaster Resilience Index. 

The remaining two generic aggregation functions, the ordered weighted 
average (OWA) and the mean-min function both allow the control of 
compensatory effects from unlimited compensation (the arithmetic mean 
function) through to no compensation (the minimum function).  However, the 
mean-min function as proposed by Tarabusi and Guarini (2013) uses two 
parameters, 𝛼𝛼 and 𝛽𝛽, where 𝛼𝛼 is an unbalance penalty and 𝛽𝛽 sets the extent to 
which indicators may substitute for each other in aggregation.  The concept of 
unbalance among indicators originates in the economic development 
literature, where it is accepted that a mixture of very high and very low values 
of indicators representing various factors driving economic development may 
be deleterious to development – hence the application of an unbalance 
penalty in the compution of a composite index of economic development 
(see, for example, Tarabusi and Guarini 2013). 

It would appear that the concept of indicator unbalance is either not relevant 
to, or has not yet been considered for vulnerability or resilience to natural 
disasters.  Unbalance is not referred to in any of the 106 composite index 
methodologies surveyed by Beccari in 2016.  For this reason, the mean-min 
function was rejected as a generic aggregation function for the Australian 
Natural Disaster Resilience Index. 

The outcome of the evaluation above was that three aggregation functions 
were chosen for use in the Australian Natural Disaster Resilience Index: 
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• the arithmetic mean where the aggregation strategy involved a 
reflective measurement model; 

• the ordered weighted average (OWA) where the aggregation strategy 
involved a formative measurement model with four or more indicators to 
be aggregated; and, 

• the discrete Choquet integral where the aggregation strategy involved 
a formative measurement model with two or three indicators or sub-
indices to be aggregated. 

The use of the discrete Choquet integral depended on the plausible 
specification of compensatory interactions between indicators.  Where this was 
not possible, OWA was used instead. 

3.2.10.2 Choice of aggregation strategy 

Aggregation strategy refers to the approach taken in the aggregation 
calculation for a composite index or sub-index, and is defined by: 

• the type of measurement model assumed – formative or reflective; 
• the number of stages or levels of aggregation; and, 
• the aggregation functions used. 

There are two steps to selecting the aggregation strategy used in the Australian 
Natural Disaster Resilience Index.  First, a sequence of considerations and 
decisions was used to select a relevant measurement model (Figure 3.6). 

Second, the aggregation strategy was identified.  The Australian Natural 
Disaster Resilience Index has a hierarchical structure (see Chapter 1).  There are 
eight theme sub-indices, which are aggregated to form the coping and 
adaptive capacity sub-indices, which are aggregated to form the Australian 
Natural Disaster Resilience Index.  For each of the Australian Natural Disaster 
Resilience Index sub-indices, an aggregation strategy was chosen from among 
the four models shown in Figure 3.7. 
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Figure 3.6: Decision tree for choice of measurement model. 

 

 

 

Figure 3.7: Aggregation strategies considered and/or tested in the computation of the 
Australian Natural Disaster Resilience Index.  Arrows denote the direction of causation 
implicit in the model.  Options for the aggregation method within each model are 
shown in red.  OWA = Ordered Weighted Average, CI = Choquet Integral. 
 
  



AUSTRALIAN NATURAL DISASTER RESILIENCE INDEX VOLUME II – TECHNICAL REPORT | REPORT NO. 493.2019 
 
 
 

 3-35 

The starting point for the choice of measurement model is the correlation level 
plot (Figure 3.5).  If there are one or more blocks of highly correlated indicators 
along the diagonal, and low correlations between indicators elsewhere (strong 
factor structure), then the next consideration is whether a reflective 
measurement model might be applicable.  This model can be applied when it 
can plausibly be argued that the block of correlated indicators have values 
that are caused by some latent and directly immeasurable characteristic of 
SA2s.  For example, it might be hypothesised that community cohesion is a 
latent characteristic of a community that will determine the level of 
volunteering, participation in local working bees and the amount of bartering 
of goods and services.  If the three indicators are highly inter-correlated, then 
their arithmetic mean is a measure of the latent characteristic of community 
cohesion.  Note that, with the high inter-correlation, there are minimal 
compensatory effects, so the arithmetic mean is an appropriate aggregation 
function. 

If there is no causal justification for a reflective model, then a formative model, 
in which causation flows from the indicators to the index, is considered.  The 
formative model corresponding to the example above would be an index of 
community cooperative behaviour, the value of which is influenced by the 
incidence of volunteering, working bee participation and bartering.  
Compensatory effects are now relevant, particularly if inter-correlations 
between indicators are not high.  Can bartering substitute for volunteering, can 
working bee participation substitute for either? 

As shown in Figure 3.6, consideration has to be given to sets of indicators that 
relate to a single index (either in a formative or reflective model), and sets of 
indicators that capture two or more distinct dimensions in the correlation 
structure.  The presence of multiple dimensions is signaled by two or more 
blocks of high inter-indicator correlations in the correlation level plot.  For 
example, in Figure 3.5, there are three dimensions: one related to income, one 
related to house and car ownership and one related to the local economy.  
The dimensional structure can be confirmed with factor analysis (if a reflective 
model is intended) or principal components analysis (if a formative model is 
intended).  The higher the proportion of variance captured by the factors 
(components), the stronger the case for a two-level or hybrid model where 
each factor (component) is represented by a sub-index and the sub-indices 
are aggregated to form a single index. (Figure 3.7).  The main advantage of 
structuring an aggregation of a large number of indicators as a two-level or 
hybrid model is that it allows for more nuanced control of compensatory 
effects, provided these are sufficiently well understood, rather than using a 
single aggregation with some generic adjustment for compensability. 

Having selected an aggregation strategy, the final stage is to select 
aggregation functions appropriate to the context.  The selection for the 
Australian Natural Disaster Resilience Index was from the discrete Choquet 
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integral, OWA or the arithmetic mean, depending on the measurement model, 
the number of indicators or sub-indices to be aggregated and the level of 
knowledge about compensatory effects among them. 

3.2.10.3 Parameters for control of compensatory effects in aggregation 
- OWA 

For the Australian Natural Disaster Resilience Index, aggregation of four or more 
indicators in formative models was done with ordered weighted averaging 
(OWA). 

The parameter by which compensatory effects are adjusted in OWA is a 
weighting vector, of length equal to the number of indicators and sum equal to 
1.  Suppose that four indicators, A, B, C and D are being aggregated, using a 
weighting vector of {0.25, 0.25, 0.25, 0.25}.  For a particular SA2, the indicator 
values (rescaled to range 0 – 1) for A, B, C and D are 0.6, 0.1, 0.9, 0.4, 
respectively.  The ordered weighted average (OWA) is obtained by ordering 
the indicator values from smallest to largest, viz. B, D, A, C, multiplying each 
value by the corresponding element of weighting vector and summing.  This is: 

0.25 x 0.1  +  0.25 x 0.4  +  0.25 x 0.6  +  0.25 x 0.9 = 0.5 

So OWA with a weighting vector of {0.25, 0.25, 0.25, 0.25} is equivalent to the 
arithmetic mean, which allows unconstrained compensatory effects. 

Consider a weighting vector of {1, 0, 0, 0}.  The OWA for the four indicators is 
now 0.1 – equivalent to the minimum function, which allows no compensatory 
effects at all. 

The extent of the constraint on compensatory effects is summarised in a single 
parameter, known as the orness, which is defined as: 

 

where w is a weighting vector of length n. 

For the weighting vector of {0.25, 0.25, 0.25, 0.25}, the orness is: 

0.25 x 0/3  +  0.25 x 1/3  +  0.25 x 2/3  +  0.25 x 3/3  =  0.5 

For the weighting vector of {1, 0, 0, 0} the orness is zero. 

In general, OWA with a weighting vector that has an orness of 0.5 is equivalent 
to the arithmetic mean (unrestrained compensation), while OWA with a 
weighting vector with an orness of zero is equivalent to the minimum function 



AUSTRALIAN NATURAL DISASTER RESILIENCE INDEX VOLUME II – TECHNICAL REPORT | REPORT NO. 493.2019 
 
 
 

 3-37 

(no compensation).  Weighting vectors with orness values between zero and 
0.5 give aggregation with partial constraint of compensatory effects. 

For the Australian Natural Disaster Resilience Index, the extent to which high 
values of some indicators could be allowed to compensate for low values of 
other indicators was known only approximately, or not at all.   Consequently, 
just two orness values were used in aggregations using OWA: 0.125 for situations 
where there was some certainty that only minimal compensatory effects should 
be allowed, and an orness of 0.375 for situations where it was reasonable to 
assume that substantial amounts of compensation were permissible in 
aggregating indicators.  An example of the former is indicators relating to 
emergency services provision – it is unlikely that high numbers of fire service 
volunteers could substitute for low numbers of police.  An example of the latter 
is indicators relating to communications – high levels of mobile phone 
coverage could, in greater part, substitute for low levels of ADSL connectivity, 
given the widespread ownership of smartphones. 

A weighting vector has a unique orness value, but one orness value does not 
define a unique weighting vector.  Many weighting vectors can have the same 
orness value.  For example {0.5, 0.3, 0.2, 0} and {0.55, 0.26, 0.13, 0.06} both have 
an orness of 0.23.  For this reason, for repeatability in computation of the 
Australian Natural Disaster Resilience Index, it is not enough to specify that the 
two orness values of 0.125 and 0.375 were used in OWA aggregations.  One 
way to ensure repeatability is to also specify a function that shapes the pattern 
of elements in the weighting vector.  After experimenting with several functions, 
it was found that an exponential function provided a repeatable and intuitively 
satisfying way of specifying a unique weighting vector from an orness value.  
For a weighting vector of length n, and a desired orness of DO, the weighting 
vector is: 

{Cn, C(n-1), C(n-2), … C2, C} 

where C is a constant such that the orness of {Cn, C(n-1), C(n-2), … C2, C} = DO.  In 
this expression, superscripts denote exponents.  Constant C can readily 
calculated using a root finding algorithm (such as uniroot in R) with: 

DO – orness({Cn, C(n-1), C(n-2), … C2, C) 

For example, the weighting vector for OWA of 4 indicators, where an orness of 
0.125 has been chosen to limit compensatory effects in the aggregation is {0.72, 
0.21, 0.06, 0.02}.  This weighting vector is obtained when C in the expression 
above takes the value 3.49. 

For an orness of 0.375, the weighting vector is {0.37, 0.28, 0.20, 0.15}.  This 
weighting vector is obtained when C in the expression above takes the value 
1.36.  These weighting vectors are uniquely defined by the orness value and the 
value of C. 
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3.2.10.4 Parameters for control of compensatory effects in aggregation 
– discrete Choquet integral 

For the Australian Natural Disaster Resilience Index, where two or three 
indicators or sub-indices in a formative model were to be aggregated, 
consideration was first given to using the discrete Choquet integral.  If 
knowledge of the compensatory effects between, or among, these was 
insufficient then OWA was used instead. 

The parameter by which compensatory affects are adjusted in aggregating 
with the discrete Choquet integral is called the fuzzy measure and is a set of 
weighting values.  In the context of indicator aggregation, the fuzzy measure 
weights can be determined by the consideration of bounding cases.  With 
rescaled indicators, the bounding cases are those sets of indicator values 
where one or more indicators take the values 0 or 1. 

Table 3.3 shows the full range of bounding cases for three indicators: ADSL 
coverage, mobile phone coverage and information availability, that are to be 
aggregated to give an index of information access.  The indicators have been 
rescaled to range 0 – 1, where 0 represents the minimum value of the indicator 
and 1 represents the maximum value of the indicator. 

Table 3.3: Example of specifying a fuzzy measure for aggregation by discrete Choquet 
integral of a set of three indicators. 

Boundary indicator values Desired value 
of index 

ADSL Mobile Information 

0 0 0 0.0 

1 0 0 0.1 

0 1 0 0.2 

0 0 1 0.1 

1 1 0 0.2 

1 0 1 0.5 

0 1 1 0.7 

1 1 1 1.0 

 
Consideration is given to what the index should be for each of these bounding 
cases.  Obviously, the first row, (0, 0, 0), should aggregate to an index of 0, and 
the last row, (1,1,1), should aggregate to an index of 1.  The second to fourth 
rows of the table show what it is believed the index should be for each of the 
indicators when they have value 1 while the remaining two have value 0.  The 
values in the table assume that mobile phone coverage by itself gives much 
better information access than either ADSL coverage or information availability 
by themselves. 
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The fifth to seventh rows of Table 3.3 shows what the index should be for pairs of 
indicators with the value 1 and the remaining indicator with value 0.  The values 
assigned to the index assume that good mobile coverage and good 
information availability alone should give better information access than good 
ADSL coverage and good information availability.  This, in turn, is assumed to be 
better than just good mobile and ADSL coverage, with poor information 
availability. 

Using the notation of James (2016), the fuzzy measure weights, v, from Table 3.3 
are: 

v{ADSL, Mobile, Information} = 1 

v{Mobile, Information} = 0.7; v{ADSL, Information} = 0.5; v{ADSL, Mobile} = 
0.2 

v{Information} = 0.1; v{Mobile} = 0.2; v{ADSL} = 0.1 

v{} = 0 

The fuzzy measure weights can equivalently be interpreted as measures of 
importance.  For example, among the single factors affecting information 
access, mobile phone coverage is more important than either ADSL coverage 
or information availability.  This might reflect mobile’s portability, immediacy 
and ability to receive SMS messages from emergency services.  In addition, 
compensatory effects can be specified by the fuzzy measure weights.  In the 
example above, v{ADSL, Mobile} has the same value as v{Mobile}, indicating 
that ADSL and Mobile can substitute for each other. 

For a set x of n indicator values for a particular SA2, and the fuzzy measure 
weights v, above the discrete Choquet integral is given by: 

 

where x(i) denotes the ith indicator when the indicator values are ordered from 
the smallest to the largest. 

To illustrate, suppose the set of indicator values is ADSL=0.2, mobile=0.8 and 
information=0.7, representing an SA2 with poor ADSL coverage, very good 
mobile coverage and good information availability.  The indicator order with 
the values ordered from smallest to largest is ADSL, Information, Mobile.  The first 
term in the summation formula above will be: 

0.2 x (v{ADSL, Mobile, Information} – v{Mobile, Information}) = 0.2 x (1-0.7) 
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The second term will be: 

0.7 x (v{Mobile, Information} – v{Mobile}) = 0.7 x (0.7-0.2). 

The third term will be: 

0.8 x (v{Mobile} – v{}) = 0.8 x (0.2–0). 

The discrete Choquet integral is the sum of these three terms, viz.: 

0.06 + 0.35 + 0.16 = 0.57 

The fine control over compensatory effects given by the discrete Choquet 
integral can be illustrated with the aggregation of various combinations of 
indicator values using the fuzzy measure weights, v, above.  The indicator 
values are ordered ADSL, Mobile, Information. 

Cv(0.9, 0.9, 0.1) = 0.26 

The low value of the composite index reflects the fact that, regardless of good 
ADSL and mobile connectivity, information accessibility overall is poor if there is 
little information available to access. 

Cv(0.1, 0.9, 0.9) = 0.66 

The high value of the composite index reflects the good information 
accessibility if mobile coverage is good and there is good information 
availability.  The low ADSL coverage does not affect the overall good 
information accessibility because ADSL and Mobile have been specified as 
substitutes in the fuzzy measure weights.  

Cv(0.9, 0.1, 0.9) = 0.50 

Although mobile coverage is poor, the information availability index is still fairly 
high, because ADSL can substitute for mobile coverage.  However, it is not as 
high as the previous example, since the fuzzy measure weights specify Mobile 
by itself as better than ADSL by itself.  Note that the arithmetic mean for all 
three examples is 0.63, completely missing the importance and compensatory 
relationships among the three indicators. 

3.2.10.5 Validation of aggregation choices 

The final stage in the aggregation of indicators and sub-indices for the 
Australian Natural Disaster Resilience Index was to compare the composite 
index obtained with the chosen aggregation method with the index obtained 
with the arithmetic mean (unrestrained compensability) and with several 
methods that have been proposed as partly non-compensable alternatives to 
the arithmetic mean, viz. the geometric mean and the Mariotta-Pareto index.  
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If the discrete Choquet integral was used for aggregation, then aggregation by 
OWA was added to the list of comparison methods. 

The purpose of the comparison was to ensure that the composite index values 
calculated with the chosen method were not substantially inconsistent with the 
values with other methods, and that any departures in the values with the 
chosen method from the values with other methods were consistent with the 
mathematics of the aggregation functions involved.  Individual SA2s with large 
differences in composite index values across the various aggregation methods 
were checked and it was invariably found that the large differences were 
associated with SA2s with substantial variation in values across the indicators 
being aggregated.  The variation in indicator values meant that compensatory 
effects were in full play, so the different ways the aggregation methods dealt 
with these effects led to markedly different values for the composite index. 

An example of the comparison of aggregation methods (the emergency 
services index) shows the results for a two level formative model (2 level with 
aggregation by OWA and discrete Choquet integral) and single level models 
with aggregation by OWA, geometric mean, Mazziotta-Pareto Index and 
arithmetic mean (Figure 3.8).  As expected, the use of OWA with a low value of 
orness results in considerable separation between the various aggregation 
methods, with the two level formative model using OWA and the discrete 
Choquet integral producing the lowest values of the sub-index, apart from the 
geometric mean.  The latter takes the value zero whenever one or more of the 
constituent indicators has the value zero.  The arithmetic mean, because it 
allows unrestrained compensation when indicators are a mixture of high and 
low values, has the highest values of the sub-index.  The Mazziotta-Pareto Index, 
with its fixed unbalance penalisation, severely reduces the value of the sub-
index when the coefficient of variation for the indicators is high. 
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Figure 3.8: Example of comparison of the chosen aggregation method (a two level 
formative model with aggregation by OWA and discrete Choquet integral (denoted as 
2 level in the key) with alternative methods of aggregation.  SA2s are ordered 
according to the coefficient of variation of their indicators, lowest to the left and 
highest to the right. 
 

3.2.10.6 Weighting for correlation in aggregating sub-indices 

When aggregating the theme sub-indices to form the coping capacity and 
adaptive capacity sub-indices, the possibility arises that some theme sub-
indices may share similar or correlated indicators.  If this is the case, then the 
dimension represented by these indicators will have an unduly increased 
influence on the sub-index obtained by the aggregation of themes and 
(implicitly) their constituent indicators.  One approach for ameliorating this 
undesired influence that has been reported in the literature is to use simple 
weighting of the indicators (or sub-indices) in the aggregation step, where 
weights are set to be the inverse of the correlations (Hudrlikova 2013; OECD 
2008; Saisana et al. 2005; Tate 2013). 

This issue only arose for one of the aggregation steps in the construction of the 
Australian Natural Disaster Resilience Index, viz. the aggregation of six theme 
sub-indices to produce the coping capacity sub-index.  Two sub-indices had a 
correlation of 0.65 – social character and community capital.  The remaining 
sub-index inter-correlations were relatively low.  The influence of this social 
dimension on the coping capacity sub-index was reduced by the simple 
approach of replacing the two sub-indices with their mean.  Given the 
relatively high correlation between them, compensability issues will be minimal, 
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and the overall effect is similar to that achieved with weighting as described 
above. 

3.3 DERIVATION OF TYPOLOGY GROUPS 

The goal of the typology was to extract a coherent grouping of SA2s with similar 
disaster resilience profiles.  Any particular Australian Natural Disaster Resilience 
Index value can result from many different combinations of theme sub-index 
values.  Patterns in the sub-index values can provide a meaningful context 
within which Australian Natural Disaster Resilience Index values can be 
interpreted and the implications for disaster resilience explored.  Cluster analysis 
was used to extract groups of SA2s with similar disaster resilience profiles.  The 
use of cluster analysis assumes that there are not infinitely many patterns of sub-
index values, rather that there are a limited number of such patterns and these 
fall into groups. 

3.3.1 Cluster analysis 

The Australian Natural Disaster Resilience Index is constructed hierarchically (see 
Chapter 1).  Each level in the hierarchy could potentially be used as variables in 
cluster analysis.  Several of the levels can be ruled out immediately.  First, the 
indicator level is unsatisfactory for cluster analysis due to the large number of 
variables (77).  Further, the goal of the cluster analysis was to provide a context 
to the geographical variation in the Australian Natural Disaster Resilience Index 
in terms of the broad conceptual factors that are known to influence disaster 
resilience, rather than highly specific characteristics that are captured by a 
single indicator.  Second, the coping and adaptive capacity level in the 
Australian Natural Disaster Resilience Index hierarchy was ruled out for its lack of 
cluster structure arising from the two dimensions (Figure 3.9). 

 
Figure 3.9: Scatterplot of coping and adaptive capacity index values demonstrating 
lack of cluster structure.  
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Partitioning around medoids confirms this with a maximum silhouette coefficient 
of 0.19 for the three cluster solution.  This is well below the threshold of 0.5, 
above which fair to good cluster structure is indicated.  The low silhouette 
coefficient is supported by a low cophenetic correlation for hierarchical 
agglomerative clustering.  Values of 0.53 (Ward’s method) and 0.40 (complete 
linkage) are well below the threshold of 0.75, above which fair to good cluster 
structure is indicated. 

If the indicator level and the second top level of the Australian Natural Disaster 
Resilience Index hierarchy are unsuitable for cluster analysis, this leaves the 
eight theme sub-indices.  A pairs plot for these sub-indices suggests some 
cluster structure is present (Figure 3.10), although some of this is an artefact of 
the disaggregation of State level indicators to SA2 level, e.g. information 
access. 

 

 
Figure 3.10: Theme level paired scatterplots showing potential cluster structure. 
  



AUSTRALIAN NATURAL DISASTER RESILIENCE INDEX VOLUME II – TECHNICAL REPORT | REPORT NO. 493.2019 
 
 
 

 3-45 

Exploratory cluster analysis using several different methods confirmed that the 
cluster structure is weak.  Partitioning around medoids (a variant of the k-means 
method) gave a silhouette coefficient less than 0.2 for any number of clusters 
between 2 and 12 (Figure 3.11).  The cluster structure was best represented by a 
three cluster solution (maximum silhouette coefficient). 

Two hierarchical agglomerative cluster functions available in R (hclust and 
agnes) were trialled with two clustering methods, complete linkage and Ward’s 
method.  These gave cophenetic correlation coefficients ranging from 0.38 to 
0.53, well below the threshold of 0.75, above which fair to good cluster structure 
is indicated.  In view of the weakness of the cluster structure, the scree plots 
and profiles for a number of clustering techniques were compared (Figure 
3.11). 

There is some suggestion in the silhouette plot and the scree plots (Figure 3.11) 
that the cluster structure might be represented by three, five or nine cluster 
solutions.  Gaussian mixed modelling did not give any indication that a model 
could be fitted to the data.  The five cluster solution was chosen for further 
investigation simply on communication grounds.  A nine cluster solution 
overloads audience capacity for information.  The three cluster solution is 
unnecessarily parsimonious and the five cluster solution strikes a balance 
between the two. 
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Partitioning around medoids – silhouette plot 

 

Hierarchical agglomerative – agnes + Ward’s 

 

Hierarchical agglomerative – agnes + complete 
linkage 

 

Hierarchical agglomerative – hclust + Ward’s 

 

 

Hierarchical agglomerative – hclust + complete 
linkage 

 

Gaussian mixed modelling 

 

 

 

Figure 3.11: Comparison of cluster outcomes from different clustering methods. 
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3.3.2 Choice of clustering method 

Given the weak cluster structure, it is likely that different cluster methods will 
lead to substantially different cluster solutions.  To aid in the choice of a solution 
that would meet the goal of the cluster analysis, viz. to identify a coherent 
grouping of SA2s that would give some context to the geographical variation in 
disaster resilience in the Australian Natural Disaster Resilience Index, three 
methods of external validation were employed. 

The remoteness score is available as a validation variable, i.e. one that was not 
used in the cluster analysis but is relevant to the assessment of cluster solutions 
against the goal of the cluster analysis.  One method of external validation was 
to test the difference in the mean remoteness scores for each of the possible 
clustering methods.  The logic behind this approach is that larger differences in 
mean remoteness scores will imply more geographically coherent clusters.  The 
Kruskal-Wallis rank sum test was used to test the hypothesis that there was no 
difference in the mean remoteness score among the five clusters (in all cases 
Bartlett’s test indicated significant inhomogeneity of variance among the 
clusters).  The results show that the greatest difference between mean 
remoteness scores among the five clusters occurs with partitioning around 
medoids (Table 3.4). 

Table 3.4: Kruskal Wallis tests of differences in remoteness scores among clusters, for 
different clustering techniques. 

Clustering method (5 cluster solution) Kruskal-
Wallis 𝜒𝜒2 

D.f. P value 

Hierarchical agglomerative – hclust + Ward’s 768.9 4 4.2e-165 

Hierarchical agglomerative – hclust + complete linkage 644.8 4 3.1e-138 

Hierarchical agglomerative – agnes + Ward’s 680.5 4 5.8e-146 

Hierarchical agglomerative – agnes + complete linkage 555.8 4 5.6e-119 

Partitioning around medoids 925.2 4 5.9e-199 

 

A second, more subjective, method of external validation is to plot augmented 
heatmaps (Figure 3.12).  In assessing the extent to which the SA2s form 
homogenous groups of themes corresponding to the clusters, there is variation 
among the five clustering methods.  The heatmap has relatively few 
homogenous blocks of purple or green corresponding to particular clusters, 
which is a reflection of the weak cluster structure discussed above.  Hierarchical 
agglomerative, R:agnes complete linkage (Figure 3.12) is probably the worst 
with regard to the segmentation by colour and height in the bar plot, and 
hierarchical agglomerative, R:hclust complete linkage (Figure 3.12)is not far 
behind.  Partitioning around medoids is certainly no worse than the remaining 
two panels, and possibly slightly better (Figure 3.12). 
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Hierarchical agglomerative, R:hclust 
complete linkage 

 

Hierarchical agglomerative, R:hclust 
Ward’s  

 

Hierarchical agglomerative, R:agnes 
complete linkage 

 

Hierarchical agglomerative, R:agnes 
Ward’s 

 

Partitioning around medoids, R:pam 

 

 

Figure 3.12: Caption on following page 
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Figure 3.12: Heatmaps of different cluster solutions.  The y axis corresponds to cluster 
groups formed in each method.  The x axis corresponds to the eight disaster resilience 
themes, colour coded by index value, where purple is a low value on the theme sub-
index, and green is a high value.  The bar plot on the right hand y axis corresponds to 
the overall Australian Natural Disaster Resilience Index value for each SA2, colour 
coded by remoteness score, where brown is metropolitan, through to green being very 
remote. 
 
For these reasons, the cluster assignment of SA2s by partitioning around 
medoids was chosen as the preferred method for achieving the goal of 
identifying a coherent grouping of SA2s that would give some context to the 
geographical variation in the Australian Natural Disaster Resilience Index. 

The third method of external validation was applied to the partitioning around 
medoids cluster solution.  Cluster memberships were mapped across Australia.  
If SA2s in the different clusters are randomly scattered across the country, this is 
an indication that the cluster assignment is of little value in providing a 
geographical context within which the Australian Natural Disaster Resilience 
Index values and constituent theme sub-indices can be interpreted.  However, 
the mapping revealed that SA2s in each of the five clusters tended to form 
geographically cohesive regions, some of which were mostly confined to 
metropolitan areas, and some of which were confined to regional Australia.  
Maps of cluster membership are provided in Volume I. 
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