FINDINGS

\& At different slope angles and driving wind velocities, different operational quasi-steady Rate of Spread (RoS) of fire roughly lies between dynamic maximum, minimum and averaged RoS values
\& Within the slope angle considered in this study, a second order polynomial relationship exists between quasi-steady Rate of Spread (RoS) of fire and slope angle, pyrolysis width and slope angle and fire intensity and slope angle.
\& As the upslope angle and wind velocity increases the plume inclines more towards the ground and when the fire runs uphill, the flame length is found to be higher

Physics based simulations of grassfire propagation on sloped terrains; upslopes and down slopes
 \section*{Jasmine Innocent ${ }^{1,3}$, Duncan Sutherland ${ }^{2,3}$, Nazmul Khan ${ }^{1,3}$, Khalid Moinuddin ${ }^{1,3}$}

'Institute of Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia
${ }^{2}$ School of Science, University of New South Wales, Canberra, ACT, 2610, Australia
3Bushfire and Natural Hazards CRC East Melbourne, Victoria, 3002, Australia

What effect does the slope have on fire Rate of Spread (RoS) and how does that compare with operational models? What effect does the driving wind velocity has on the RoS, head fire, flame parameters, as the slope angle varies?

INTRODUCTION AND HIGHLIGHTS

- Rate of spread of fire (RoS) and fire behaviour depends on various topographical, weather and fuel factors. Topographical feature such as slope can increase or decrease RoS depending on whether the slope is upward or downward
- A physics-based Fire Dynamics Simulation(FDS) model is used to conduct a set of field-scale simulations with varying wind velocities and slope angles.
- Rate of spread (RoS), head fire width, fire intensity, flame parameters are analyzed and compared with widely used empirical models.
- This study aims to provide insight into grassfire behavior which may then be used to improve operational models, improve prediction of real wild fires, and subsequently mitigate the risks of wildfire impact.

MODEL SETUP

The simulation domain size is $360 \mathrm{~m}(\mathrm{~L}) \times 120 \mathrm{~m}(\mathrm{~W}) \times 60$ $\mathrm{m}(\mathrm{H})$. The burnable plot is $80 \mathrm{~m}(\mathrm{~L}) \mathrm{x} \quad 40 \mathrm{~m}(\mathrm{~W}) \mathrm{x}$ $60 \mathrm{~m}(\mathrm{H})$. Slope is implemented in the simulations by changing the magnitude of components of gravitational force in the x and z directions. Grid size for burnable plot is chosen as $0.25 \times 0.25 \times 0.25 \mathrm{~m}$. Fue and thermo- physical parameters are selected and thermo- physical par
following Moinuddin et al [3]
Simulations are conducted for both upslopes and downslopes with varying wind velocities of 12.5,6 and

RESULTS AND DISCUSSION

From the contour plots in Figure 1, it is observed that a the slope angle increases, the firefront becomes wide and reaches the end of the burnable grass plot much earlier. Pyrolysis width increases as the firefron progresses from the ignition line, then it plateaus (i.e. reaches a quasi-steady state) and finally decreases as shown in Figure 2 (a). Quasi-steady pyrolysis width values with lower wind velocities cases are found to be lower than that with higher wind velocities, for both upslope and downslope cases (Figure 2b).

The results show that within the slope angles considered in this study, a second order polynomial relationship exists between the quasi-steady RoS and the slope angle, pyrolysis width and slope angle and fire intensity and slope angle, for the upslope and downslope cases for $U_{10}=12.5,6$ and 3 ms

The dynamic averaged RoS values are found to be closer to quasi-steady RoS values, for all three velocity cases (Figure 3 for $6 \mathrm{~ms}^{-1}$ cases). Comparing the numerical results, for a given slope angle, quasi-stead RoS values with lower wind velocity cases are found to be lower, however, the difference narrows between 3 and $6 \mathrm{~ms}^{-1}$ cases as the slope angle increases.

From the plots in Figure 4, with higher upslope angle the plume would be prone to flame attachment When the fire runs uphill, the flame length is found to be higher when the flame is attached. It is also found that the flame height varies between 1.5 to 2.5 m which is less than value considered by fire behaviou analysts as 4 m .

References:

1] McArthur, A.G Weather and grassland fire behaviour. 1966: Forestry and Timber Bureau, Department of national Development and Timber
Commonwealth \qquad [2] AS 3959 : Construction of Buildings in Bushfire-prone Areas : Standards Australia : Sydney. 3rd Edition 2009
[3] Moinuddin, K.A.M., D. Sutherland, and R. Mell, Simulation study of
grass fire using a physics-based model: striving towards numerical rigoul and the effect of grass height on the rate-of-spread. Internationa Journal of Wildland Fire, 2018. 27(12): p. 800-814.

Figure 4: Graphic representation of plumes emanating from grass plot at 0° and $+30^{\circ}$ slope when

