Long-range fire weather predictions for Australia ERP14 Project – BoM, CFA, BNHCRC, DELWP (Safer Together program) Andrew J. Dowdy¹, Naomi Benger¹, David Jones¹, Lynette Bettio¹, Paul Gregory¹, Musa Kilinc³, Andy Ackland^{2,3}, Sarah Harris³ ¹Bureau of Meteorology, Melbourne, Australia ²DELWP, Melbourne, Australia ³CFA, Melbourne, Australia October 2021, AFAC Conference # Overview - ➤ New capability for Australia: predicting dangerous bushfire conditions more than one week ahead (weeks, months & seasons). - ➤ Previously, long-range fire outlooks used temperature and rain individually: new modelling system combines humidity, wind, temperature and rain, with observations for fuel moisture. - ➤ Long-range fire weather predictions are now being provided to fire agencies, including trialled over the past two summers. - ➤ Component of broader development of 'seamless' predictions over different time scales, for various hazards (e.g., thunderstorms, dry lightning). ## Motivation Initial research showed high percentage of correct predictions 3 months ahead (based on predictions of Fire Weather Index values above median) Accuracy of seasonal prediction of fire weather, for the months September-November. Reference: 25) Predictions for last summer, compared to historical observations for those months: - Model correctly simulates the general spatial features and how these vary for different months. - Fewer days with FFDI > 25 (based on comparison to historical observations for these months). ## Soil moisture (for fuel moisture) KBDI used as input to Drought Factor (as part of FFDI formulation) # Grassland Fire Danger Index (GFDI) - Shown here for 100% curing and fuel load of 4.5 t/ha - Also calculated for variations (e.g., 75% curing) ## Why was the Black Summer predicted to be so severe? #### **Stratospheric polar vortex was one factor:** - Major contributor to severity of Black Summer fire conditions, together with the long-term drought, positive Indian Ocean Dipole (IOD) and climate change. - The conditions might have been worse if a strong El Nino event had also occurred. #### Changes in the likelihood of extreme high T_{max} , low rainfall and high wildfire danger during polar vortex weakening years **Reference**: Lim et al. 2019 *Nature Geoscience*. # Automated products - and development of presentation styles # Real time November 2020 Outlook (based on model run 1 October 2020) # Hindcasts Predictive skill for November (based on 1 October model runs 1990-2012) #### Broader capability: predicting hazards over different time scales Fire weather data available for each day (5 km grid) - back to 1950 based on observations (<u>www.bom.gov.au/jsp/ncc/climate_averages/ffdi</u>) - multi-week to seasonal predictions (from this project) - climate change projections throughout this century (see Figure) Future change in the number of days with dangerous conditions (2060:2079 - 1990:2009, for high emissions) Projections for three different ensembles (using different downscaling approaches) and two measures of severity. Reference: https://www.nature.com/articles/s41598-019-46362-x # **Thunderstorms** - Unlike fire weather, climate drivers (e.g., El Nino/Southern Oscillation and Indian Ocean Dipole) have little influence on thunderstorms and lighting in Australia (e.g., https://www.nature.com/articles/srep20874). - Long-range prediction not possible at the moment for Australia. - Influence of climate change on lightning largely uncertain. - Some evidence for long-term change in number of dry lightning days, including increases in parts of southeast Australia (reference https://doi.org/10.1007/s00382-020-05167-9). ### Climate hazards – from research to outcomes Climate research on fires, TCs, ECLs, thunderstorms and associated extremes (wind, heat, rainfall) used in many ways: - For AFAC's Discussion Paper on climate hazards, leading to changes in practises (enhanced decision making and adaptation). - ➤ Used for Royal Commission, State of the Climate, IPCC and sectors such as energy (ElectraNet, AEMO), environment (GBRMPA, World Heritage), state/federal gov. (PM briefings, Senate Estimates, QoN), health sector (fire/smoke, lightning, asthma), finance sector, planning (Standards Australia), ... - ➤ Series of summary brochures distributed to wide range of user groups including fire agencies: http://nespclimate.com.au/new-information-on-extreme-weather-and-natural-hazards-in-our-changing-climate/ # Summary - > New capability developed of long-range fire weather prediction in Australia. - > Contributes to broader set of seamless hazard services: - Multi-week to seasonal predictions consistent with observations, as well as with climate change projections. - > Seasonal predictions from this project are being delivered to fire agencies. - ➤ The project results are also being built on through ACS and AFDRS projects for operationalisation in next steps.