ECONOMIC ANALYSIS OF PRESCRIBED BURNING FOR WILDFIRE MANAGEMENT IN THE SOUTH WEST OF WESTERN AUSTRALIA

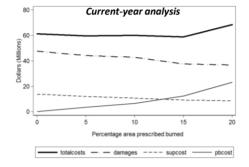
Veronique Florec¹, David Pannell¹, Michael Burton¹, Joel Kelso², George Milne²

¹ School of Agricultural and Resource Economics, University of Western Australia

THIS THESIS EXPLORES THE APPLICATION OF ECONOMIC ANALYSIS TO WILDFIRE MANAGEMENT AND AIMS TO EVALUATE TRADE-OFFS BETWEEN PRESCRIBED BURNING, WILDFIRE SUPPRESSION AND WILDFIRE DAMAGES.

THE ISSUE

- Wildfire suppression costs have increased substantially and wildfire impacts have become more severe
- As a result, there has been an increased focus on prescribed burning for wildfire risk mitigation
- But little attention has been given to the economic effects of prescribed burning (PB) programs and the tradeoffs in the allocation of resources between different fire management activities



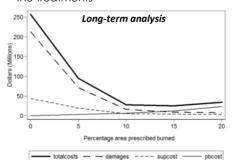
PRIMARY RESEARCH QUESTIONS

- What PB strategy minimises the sum of management costs and damages for the current year?
- 2. Does extending the existing fire economics models to include longterm dynamics change the optimal strategy?

WHAT WE DID

- Simulated a large number of fires under varying climatic conditions for different PB strategies using the AUSTRALIS wildfire simulator
- Estimated the costs of PB, the costs of suppression and the resulting damages
- Compared the sum of management costs and damages for the strategies tested

RESULTS


Current-year analysis

- Considering only costs and benefits in the current year, the optimal PB strategy for the South West forest region in WA is 15% of public land
- However, there is not much difference in the results for different levels of PB (see Figure above)
- The results are very sensitive to PB costs and the relationship between fire intensity and damages

Long-term analysis

- When accounting for the impact of current PB on future fuel loads, the optimal PB strategy is between 10 and 15% (see Figure below)
- Low levels of prescribed burning result in significantly larger damages in the long run due to fuel load build-up

These results suggest extremely high levels of prescribed burning, that might not be feasible due to the small window of suitable climatic conditions to apply the treatments

IMPLICATIONS

- An analysis considering only the current year does not provide a clearcut answer (there is a wide range of near-optimal strategies)
- Economic models need to reflect the long-term dynamics of fuel accumulation, short-term analyses are not suitable for the evaluation of PB
- Annual PB budgets need to reflect long-term planning, otherwise they can lead to high future costs
- Given the context of the south-west of WA, where areas of highly flammable vegetation are intermingled with human assets, it is important to maintain a minimum level of prescribed burning that keeps a mosaic of fuel levels in the landscape

OTHER QUESTIONS EXPLORED IN THE THESIS

- If the spatial distribution of the treatments is intensified around the wildland-urban interface, would the optimal strategy change, and if so how?
- How does the variability of expected damages (rather than the average) differ under different PB strategies?
- How will climate change affect PB strategies?

PROJECT INFORMATION

For more information, email Veronique Florec at <u>veronique.florec@uwa.edu.au</u>

² School of Computer Science and Software Engineering, University of Western Australia