The Role of Extreme Value Analysis to Enhance Defendable Space for Construction Practice and Planning in Bushfire Prone Environments

Grahame Douglas^{1,2}, Yaping He.¹, Yang Xiang¹, E. Charles Morris¹

1. Western Sydney University; 2. BNHCRC

Bushfire Problem

- Bushfires have complex temporal and spatial components:
 - Vegetation, Topography, Prevailing weather.
 - Not uniform across the landscape.
- Getting the correct inputs for fire behaviour to determine an engineered solution for construction and planning outcomes.
- Design bushfire impacts on cost of construction and risk of loss of life and property.
- Bushfires are a regular occurrence however not previously investigated for recurrence unlike floods and other natural disasters.

Towards a Design Bushfire

- BAL used as expression of radiant heat (plus flame and ember).
- Derived from flame dimensions, flame temperature and distance of receiver.
- FFDI linked to increased recurrence of fires as extreme events.
- Difficulty is defining bushfire scenarios for design and assessment purposes.
- Challenge as to appropriate FFDI as a benchmark or if a unified benchmark exists?
- Verification method being introduced to BCA.

Recent Major Bushfire Events

Event Year FFDI Source Ash Wednesday 1983 >100 Sullivan (2004) Mt Hall fire >100 NSW RFS (2002) 2001 ACT (Duffy, etc.) 105 McLeod (2005) 2003 Smith (2005) Eyre Peninsula 200 2005 **VRCB** (2010) Black Sunday 188 2009

Challenges

- Climate change and use of GCM
- Previous studies focussed on historical data.
- Mapping of extreme values and return periods:
 - Relies on complex models
 - Use of FFDI vs inputs to FFDI?
 - Number of data points may be limited.
 - Scenarios occur at different periods in the landscape which climate models have difficulties.
- Alternatively, build up weather station data.

Fire Behaviour Models

- McArthur vs Vesta
- Underpins site assessment flame dimensions
- Sensitive to underlying assumptions.
 - Weather
 - Vegetation
- FFDI applied to National Fire Weather Dataset (Lucas, 2010) but limited locations.
- ENSO IOD affects?
- Models require different inputs.

Data Collection and Analysis

- National Historical Fire Weather database and other data can be used for robust assessment.
- NSW has 21 fire weather areas (districts)
- Additional FFDI datasets derived from BoM data.
- Some areas FFDI not appropriate (Far Western NSW).
- Composite of National Historical and new Datasets used.

NSW Fire Weather Areas

1	Far North Coast
2	North Coast
3	Greater Hunter
4	Greater Sydney
5	Illawarra/Shoalhaven
6	Far South Coast
7	Monaro-Alpine
8	ACT
9	Southern Ranges
10	Central Ranges
11	New England
12	Northern Ranges
13	North-Western
14	Upper Central West
15	Lower Central West
16	Southern Slopes
17	Eastern Riverina
18	Southern Riverina
19	Northern Riverina
20	South Western
21	Far Western

Grafton **Coffs Harbour** Williamtown Sydney Nowra **Batemans Bay** Cooma Canberra Goulburn Bathurst Armidale Tamworth Moree Coonamble Dubbo Young Wagga Wagga Deniliquin Hay Mildura Cobar

FFDI datasets

Derived from:

- 3:00 pm RH
- 3:00 pm Wind speed (@10m)
- Maximum daily temperature (Celsius)
- Daily Drought Factor (DF)
- 1976-2009 (Lucas, 2010) and 1994-2009 BoM
- Forest Fuel Moisture:

Vesta (Temp and RH) @ 3:00 pm.

- Wind speed (Vesta) @ 3:00 pm.
- Not all Lucas (2010) data used.

Past approaches

FFDI exceeded on more than one occasion
FFDI which has a frequency percentile value.
Derived value from maximum of input values (i.e. RH, Wind, DF, and Temp.)

Each has significant shortfalls.

Based on limited past records.

Extreme Value Assessments

- Current study considers FFDI and FMC.
- Three techniques considered:
 - GEV
 - GPD
 - Classical Gumbell (annual max)
- All three techniques and the associated distributions were tested for fit and correlation coefficient.
- 1:50 year return (recurrence or ARI) determined.

Probability Density Distribution

Recurrence Plots for Sydney Airport

District No.	FFDI1:50			FFDI		Fm1:50 (%)
	GEV	Amax	GPD	A\$3959	3:00pm Max	GEV
1	101	120	94	80	93	2.64
2	96	94	82	80	95	2.86
3	106	121	101	100	99	1.84*
4	98	110	96	100	95	2.47
5	112	122	104	100	120	3.55
6	97	112	90	100	74	3.07
7	83	96	84	80	68	2.28
8	100	115	96	100	99	2.48
9	105	121	104	100	91	2.00
10	83	100	82	80	91	2.93
11	46	52	46	80	46	3.07
12	100	101	100	80	105	2.44
13	115	104	103	80	125	2.41
14	123	163	121	80	121	2.29
15	107	121	101	80	99	2.60
16	79	97	89	80	71	2.35
17	122	144	121	80	138	2.26
18	131	146	125	80	121	2.42
19	108	125	106	80	125	1.55*
20	136	150	130	80	132	2.40
21	116	128	113	80	117	2.22

Discussion

- Extreme value techniques allow interrogation of multiple weather parameters.
- GEV preferred tool and feasible for risk determination.
- GPD generally closer than Amax. Amax generally higher than GPD or GEV.
- GEV is more flexible with data limitations.
- Generally FFDI 100 for NSW but some exceptions.
- Can be used for FMC (but limitations).

Summary and Conclusions

- Bushfire behaviour models need good data for planning and construction practice.
- Previously applied approaches have shortfalls.
- Mapping processes have limitations for planning and construction practice.
- EVA used in current study has overcome shortfalls of other methods. It sets a scientific foundation for determining design bushfire conditions.
- GEV method preferred and shows good correlation with the field data.

Future Work

- Same method can be applied to wind data in conjunction with fuel moisture for Project Vesta model
- The defendable space tables in the relevant standard can be revised based on the regional fire weather conditions and fuel characteristics
- Comparative evaluation of MacArthur and Project Vesta models at comparable return period

Acknowledgements

Bushfire & Natural Hazards CRC

NSW Rural Fire Service

Bureau of Meteorology

