

MODELLING FEEDBACK BETWEEN FUEL-REDUCTION BURNING AND FOREST CARBON AND WATER BALANCE IN EUCALYPT FORESTS

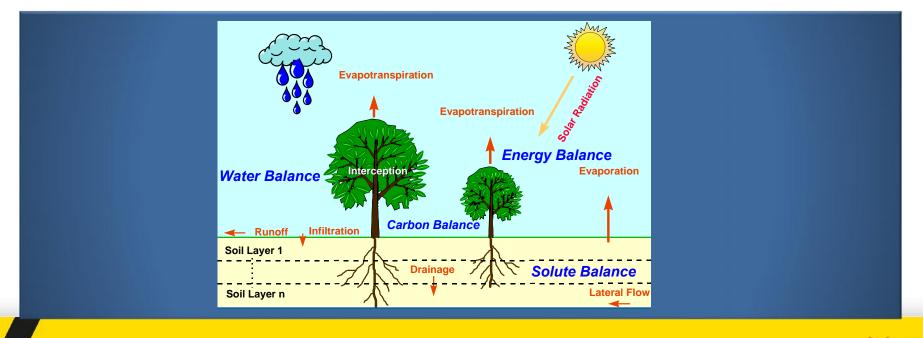
Mana Gharun, Malcolm Possell, Tina Bell School of Life and Environmental Sciences, Faculty of Science, University of Sydney

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

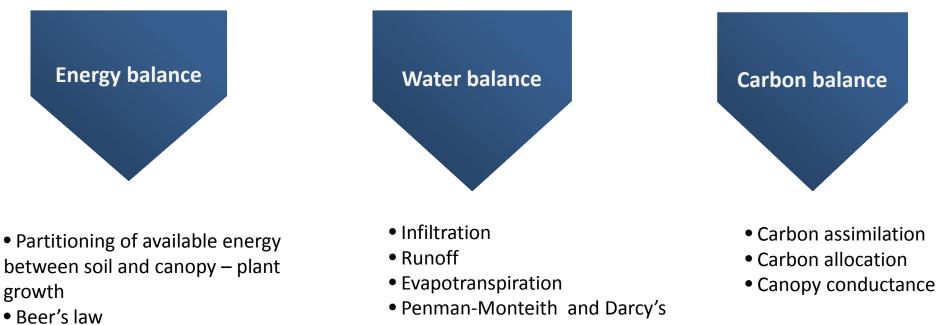
Australian GovernmentEDepartment of Industry,CoInnovation and ScienceCo

Business Cooperative Research Centres Programme

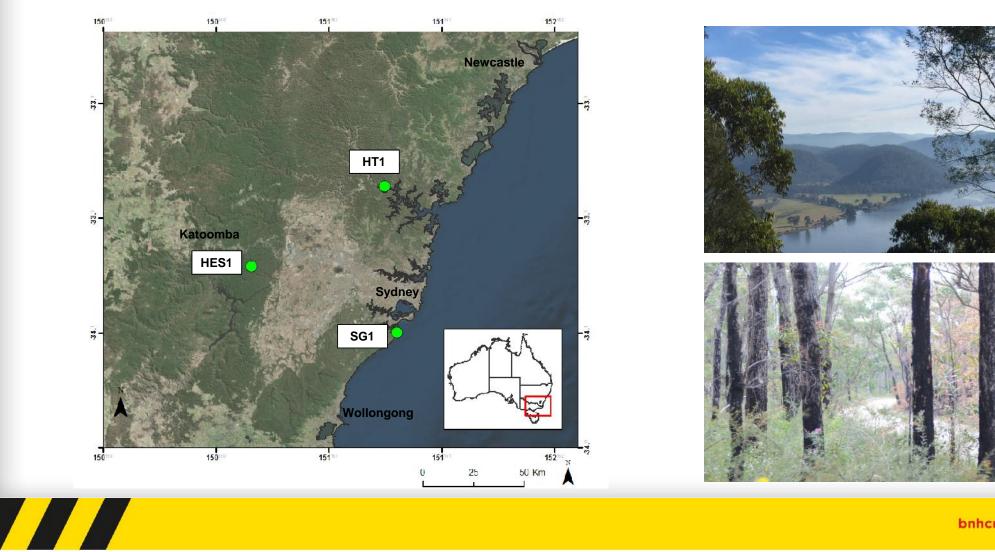
BACKGROUND


- 1) Fuel reduction burning (FRB) effective for reducing severity and extent of unplanned fires in Australia
- 2) Priority is for mitigation of risk to life and property

3) Integration of environmental values into fire management operations; high quality water, capacity for carbon sequestration


CARBON AND WATER PROCESSES ARE LINKED, WHY SIMULATE IN ISOLATION?

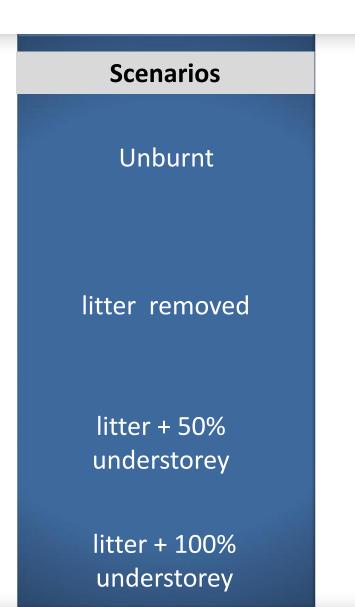
- 1) WAVES model (Zhang et al. 1996) Simulating water, energy, carbon
- 2) Vegetation growth and death, one-dimensional, process based, daily
- 3) A new approach to quantifying management impact on carbon and water budgeting

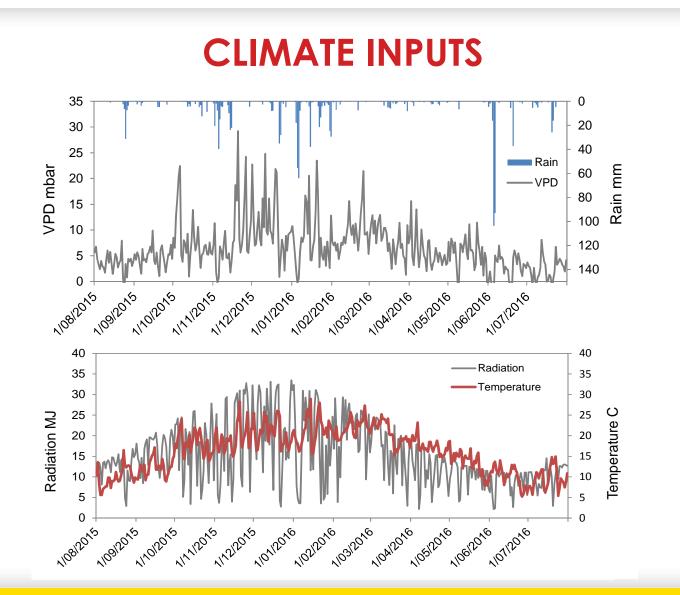

Zhang L, Dawes W (1998) WAVES, an integrated energy and water balance model. TR 31-98, CSIRO, Canberra

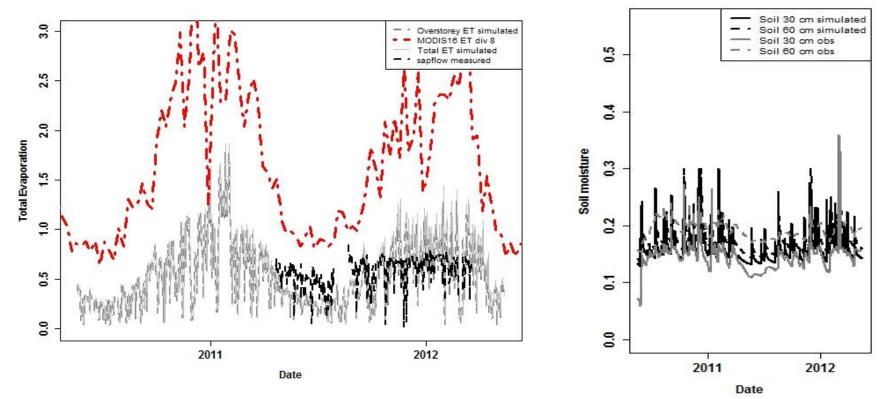
MODELLED COMPONENTS

law

STUDY AREA







VEGETATION PARAMETERS

	Vegetation parameters								
1	1 minus albedo of the canopy	14	Degree-daylight hours for growth						
2	1 minus albedo of the soil	15	Saturation light intensity						
3	Rainfall interception coefficient	16	Maximum rooting depth						
4	Light extinction coefficient	17	Specific leaf area						
5	Maximum carbon simulation rate	18	Leaf respiration coefficient						
6	Slope parameter for the conductance model	19	Stem respiration coefficient						
7	Maximum plant available soil water potential	20	Root respiration coefficient						
8	IRM weighting of water	21	Leaf mortality rate						
9	IRM weighting of nutrients	22	Above-ground partitioning factor						
10	Ratio of stomatal to mesophyll conductance	23	Salt sensitivity factor						
11	Temperature when the growth is 1/2 of optimum	24	Aerodynamic resistance						
12	Temperature when the growth is optimum	25	Crop harvest index						
13	Year day of germination	26	crop harvest factor						

Parameterization with sap flow data, MODIS ET, soil moisture measurements (Vervoort et al. 2016)

PARAMETER IDENTIFICATION AND CALIBRATION

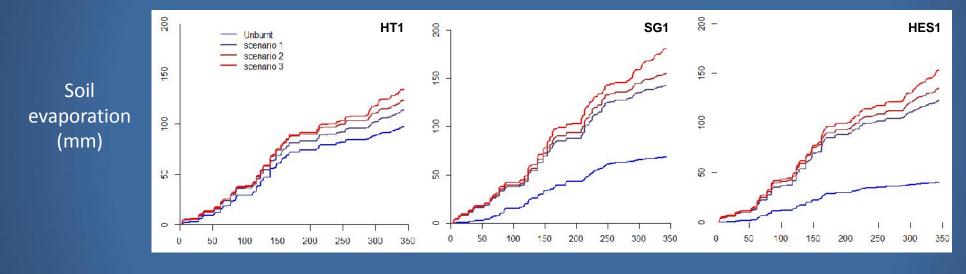
From Vervoort et al. (2016)

MODEL INITIALISATION

FRB name	FRB size (Ha)	Latitude	Slope (°)	Aspect	Overstorey biomass (t/ha)	Understorey biomass (t/ha)	Litter biomass (t/ha)
HT1	612	-33.0	4	NE	137.8	28.8	4.8
SG1	166	-34.1	5	NE	170.9	40.9	17.3
HES1	634	-33.8	5	NE	255.5	34.8	10.7

Measured litter carbon 47.1% ± 0.1 (± se of mean)

IMPACT ON VEGETATION INTERCEPTION


Response to different fuel reduction burns

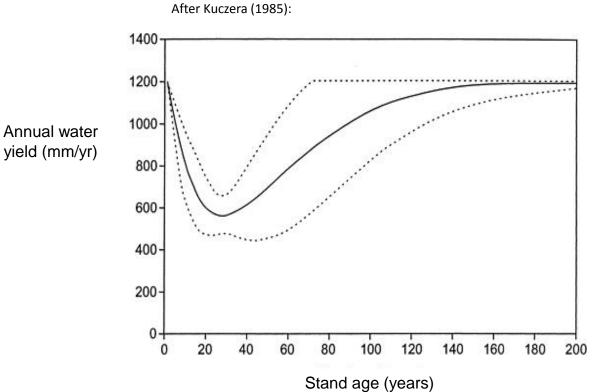
HT1 SG1 HES1 Inburnt 250 L 250 cenario 1 scenario 2 scenario 3 200 200 Understorey interception 150 (mm) 100 20 8 Days

• In the unburnt forests in 8-13% of the incoming rainfall is intercepted by the overstorey and 15-20% by the understorey.

IMPACT ON SOIL EVAPORATION

Response to different fuel reduction burns

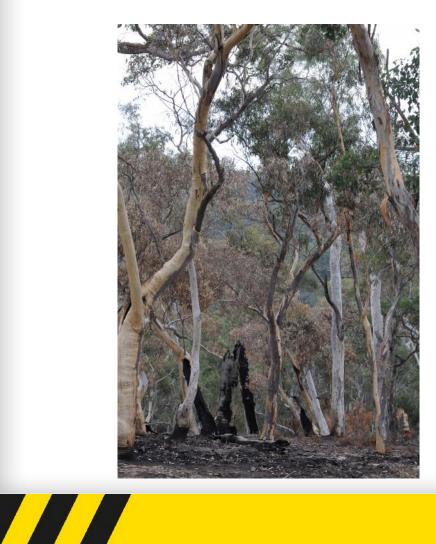
Days

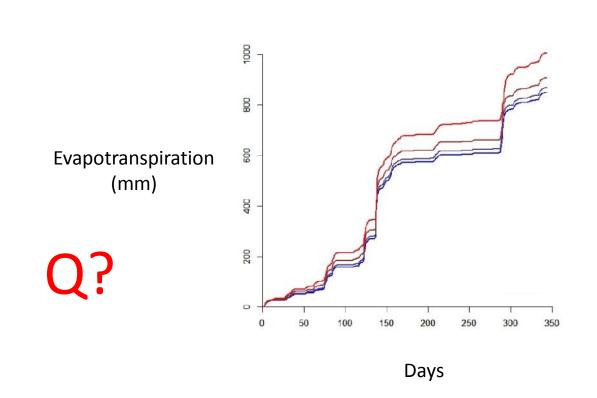

• In the unburnt forests only 5% of the net rainfall is lost to soil evaporation. This increases to 15% after fuel reduction burning.

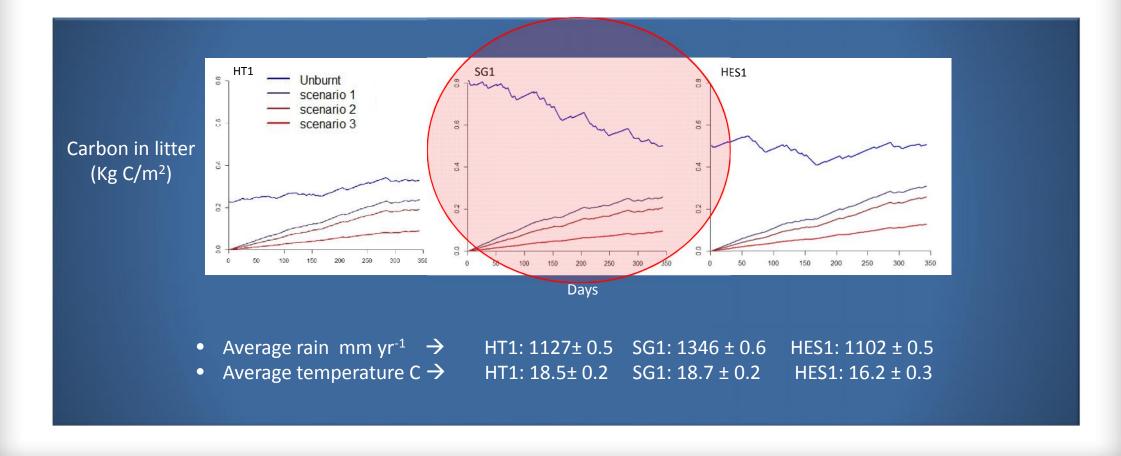
SIGNIFICANT CHANGES IN PRODUCTIVITY AND WATER FLUX DUE TO BURNING?

		HES1			HT1			SG1	
Site									
	S 1	S2	S 3	S1	S2	S 3	S 1	S2	S 3
ET _{total}	ns	ns	ns	ns	ns	ns	ns	ns	ns
ET _{canopy}	ns	ns	ns	ns	ns	< 0.05	ns	ns	< 0.001
$ET_{understorey}$	ns	ns	< 0.001	ns	ns	< 0.001	ns	ns	< 0.001
E_{soil}	< 0.001	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns
LAIcanopy	< 0.001	< 0.001	< 0.001	ns	< 0.05	< 0.001	< 0.001	< 0.001	< 0.001
LAIunderstorey	< 0.001	< 0.001	< 0.001	ns	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Litter	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
Soil storage	< 0.001	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns

Significance levels tested at = 0.05 with the Mann-Whitney-Wilcoxon method.

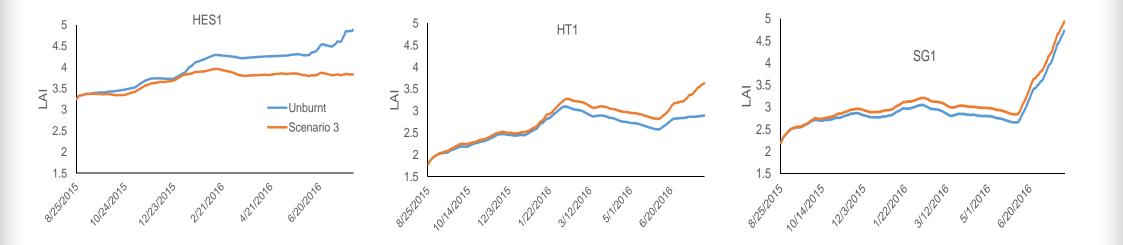

IMPACT OF FUEL REDUCTION BURNING COMPARABLE WITH HIGH INTENSITY BUSHFIRES?




Mountain Ash forests, Falls Creek, Victoria

EFFECT ON CATCHMENT WATER YIELD?

IMPACT ON CARBON STORED IN FINE FUEL



SIGNIFICANT CHANGES IN PRODUCTIVITY AND WATER FLUX AFTER FRB?

		HES1			HT1			SG1	
Site									
	S 1	S2	S 3	S 1	S2	S 3	S 1	S2	S 3
ET _{total}	ns	ns	ns	ns	ns	ns	ns	ns	ns
ET _{canopy}	ns	ns	ns	ns	ns	< 0.05	ns	ns	< 0.001
$ET_{understorey}$	ns	ns	< 0.001	ns	ns	< 0.001	ns	ns	< 0.001
Eccil	<0.001	<0.001	<0.001	ns	ns	ns	ns	ns	ns
LAIcanopy	< 0.001	< 0.001	< 0.001	ns	< 0.05	< 0.001	< 0.001	< 0.001	< 0.001
LAIunderstorey	< 0.001	< 0.001	< 0.001	ns	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Litter	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Soil storage	< 0.001	< 0.001	< 0.001	ns	ns	ns	ns	ns	ns

Significance levels tested at = 0.05 with the Mann-Whitney-Wilcoxon method.

IMPACT ON CANOPY BIOMASS PRODUCTION

• Resource availability -> Increased overstorey growth (LAI)

1) Global carbon modelling and accounting after fire

2) Application of physical models, over space and time

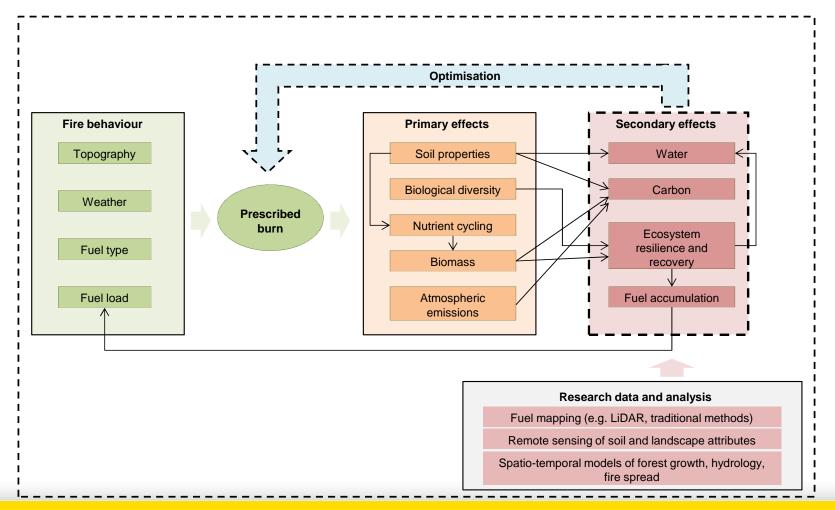
3) Fuel reduction burning impact on overstorey growth

4) Differences in carbon allocation related to stand density and site conditions (P, T)

5) Assumptions about nutrient limitation, rooting depth, soil properties with depth → More research needed...

THANK YOU

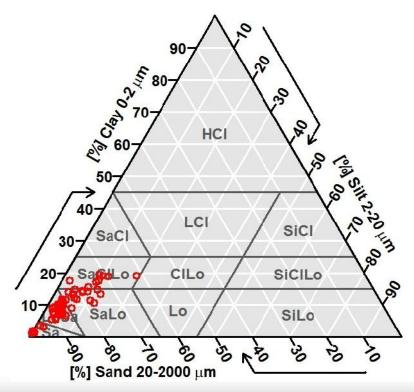
Dr Mana Gharun mana.gharun@sydney.edu.au


Centre for Carbon, Water, and Food, School of Life and Environmental Sciences The University of Sydney

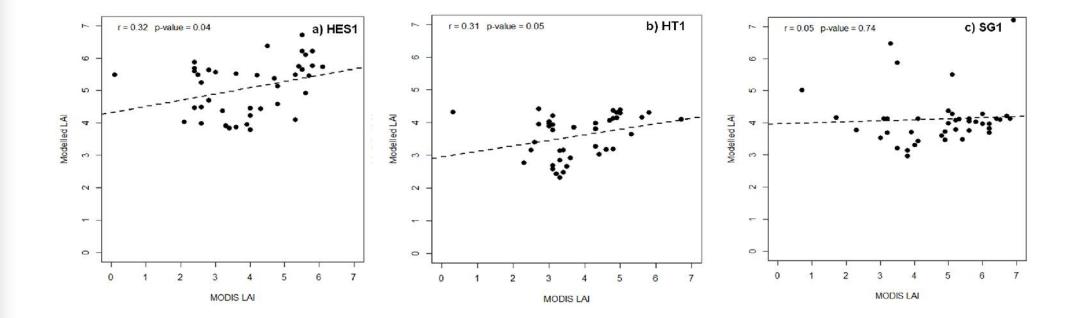
The University of Sydney

T +61 2 8627 1037 W http://sydney.edu.au/science/life-environment

OPTIMISATION OF FUEL REDUCTION BURNING



Gharun et al. Journal of Environmental Management (2017)


SOIL PROPERTIES

 Soil hydraulic properties using the Broadbridge and White (1988) soil hydraulic model

VALIDATION WITH MODIS LEAF AREA INDEX

