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ABSTRACT 

 

Natural disaster prevention activities are attracting greater priority since prevention is 

more cost-effective and less uncertain than response, and aligned with the vision and 

mission of sustainable development. Increasing the resilience of communities and 

businesses is dependent on the extension of structural and non-structural risk mitigation 

activities. Hence, the nation-wide frameworks of natural disaster risk management are 

promoting a global movement from reactive activities (response and recovery) to 

proactive actions (prevention and mitigation). In Australia, flood risk management is of 

high priority since flood is a frequent natural hazard with significant financial 

consequences. 

Flood risk assessment and flood damage estimation are the primary steps in the flood 

risk management process because they are essential for the identification and 

prioritisation of top priority areas, cost-benefit analysis, checking the feasibility of risk 

mitigation options, selecting best practices in risk reduction and land use planning. This 

research aims to develop a validated flood damage assessment framework for the 

geographical area of Australia using historical data collected in several disaster events 

to inform disaster management policy in support of the development of risk reduction 

measures. 

In Australia, due to a lack of empirical data, most damage models are not calibrated 

with real damage data, and few studies have been conducted on the validation of results. 

In addition, most approaches are absolute, which is quite rigid and does not easily 

transfer across time and space. All approaches are of the traditional type, which relies 

on a deterministic relationship between type or use of the properties at risk and the 

depth of water. Thus, the interaction of most damage-influencing parameters and the 

uncertainty of data are neglected. This study has attempted to address these issues and 

the knowledge gaps. 
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Firstly, a comprehensive empirical data set including information on damage extent, 

flood impact variables and resistance factors was collected, and data mining, data 

preparation and data transformation were conducted. Since the function approach is a 

common and internationally accepted methodology for estimating the value of flood 

losses, some new relative multi-parameter flood damage assessment functions were 

derived, calibrated and validated for the most common residential and commercial 

building types in Australia. The functions were developed using the bootstrapping 

approach and considered the inherent uncertainty in the data sample. The performance 

of the new flood loss functions, in comparison to the empirical data, was contrasted 

with that of well-known flood damage assessment models from overseas and Australia. 

The new model was then transferred to a study area in Italy to check the ease of using 

local empirical data, evaluating the accuracy of the outcome, and assessing the ability to 

change parameters based on building practices across the world.  

Flood damage assessment is a complicated process and can be dependent on a variety 

of parameters which are not considered in stage-damage functions. Accordingly, a tree-

based model was developed for exploring the interaction, importance and influence of 

other damage-influencing parameters on the extent of losses. Finally, the candidate has 

explored the predictive performance of the new approaches (i.e. flood loss functions and 

tree-based flood loss models) in assessing the extent of physical damages after temporal 

and spatial transfer. The predictive power of these models was tested for precision, 

variation and reliability, and was also checked for some sub-classes of water depth and 

some groups of building type. 

The advantages of the newly derived stage-damage functions compared to the 

existing Australian models include: calibration with empirical data, greater accuracy in 

results, a better level of transferability in time and space, consideration of the epistemic 

uncertainty of data, transparency of the logic behind the model and the ability to change 

parameters based on building practices across the world. Furthermore, results of the 

tree-based analysis showed that while water depth is the most significant damage 

predictor in the area of study, floor space, private precautionary measures, building 

value and building quality also correlate with the extent of flood losses. Also, the tree-
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based models are shown to be more accurate than the stage-damage function. Thus, 

considering more parameters and taking advantage of tree-based models are 

recommended. Finally, it has been shown that considering more details of the damaging 

process can be useful for enhancing the level of transferability of damage models in 

time and/or space. 

Overall, this thesis presents a significant contribution to the flood damage assessment 

process by offering a calibrated and validated flood loss estimation framework. The 

results provide the input data for subsequent damage reduction, vulnerability mitigation 

and disaster risk reduction. 
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1 INTRODUCTION 

 

 

 

1.1 Motivation 

When a disaster occurs in densely populated urban areas, the damage bill is high, and 

the population displacement is considerable. To cope with these challenges and grow 

sustainably, urban developments should be planned based on a good understanding of 

disaster risks. Understanding disaster risk is the primary step of natural peril event 

management frameworks (e.g. the Sendai framework for Disaster Risk Reduction) 

because it is essential for prioritisation of disaster risk mitigation projects, cost-benefit 

analysis, checking the feasibility of risk mitigation options, selecting best practices in 

risk reduction and land use planning. In this regard, since risk is defined as the 

probability and magnitude of expected damages, the estimation of negative 

consequences and the assessment of probable damages could be considered as the core 

element of understanding disaster risk (Emanuelsson et al., 2014). 

Probability * Negative Consequences = Risk  

Flood is the most expensive natural disaster in Australia and the world, and due to 

urban consolidation (i.e. growth in the value and vulnerability of the exposed assets) 

and climate change, flood risk has been increasing considerably (Hasanzadeh Nafari et 

al., 2016a). Flood risk management activities can be categorised as prevention, response 

and recovery groups (Fig. 1-1).  
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Figure 1-1: Flood risk management activities 

 

The international frameworks of natural peril event management are promoting a 

global movement from disaster management to disaster reduction (i.e. being more 

proactive rather than reactive). Accordingly, prevention activities are attracting further 

attention since they are more cost-effective, less uncertain, and entirely aligned with the 

vision and mission of sustainable development. In this regard, as stated earlier, 

understanding flood risk (i.e. flood mapping and assessing flood risk) could be 

considered as the primary step of the flood risk prevention framework (Fig. 1-2).  
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Figure 1-2: The process of flood risk prevention 

 

Overall, flood is known to be the costliest natural disaster, necessitating greater 

attention to flood risk management. Flood risk prevention activities are of higher 

priority than response and recovery issues. Understanding flood risk, including flood 

mapping and flood risk assessment, is the primary step in the flood risk prevention 

process. While much effort has gone into flood mapping, flood risk assessment models 

are still subject to a high level of uncertainty (Kreibich and Thieken, 2008; Merz et al., 

2004; Meyer et al., 2013). In this regard, flood damage estimation is an important 

component of flood risk assessment, and inaccurate damage estimation leads to wasted 

effort, money and resources for the organisations involved in flood risk mitigation 

(Hasanzadeh Nafari et al., 2016b; Merz et al., 2010). 

1.2 Problem statement 

Flood is a frequent natural hazard that has significant financial consequences for 

Australia, i.e. 29% of the total cost for the nation’s economy and the built environment 

(Bureau of Transport Economics, 2001). Although the emergency response is very 

successful in Australia in terms of saving human lives, preparedness for natural disaster 

impacts with reference to loss reduction and damage mitigation has been less 

successful. It should also be noted that the value of exposed properties has been 

increasing exponentially, thereby raising sensitivity in the financial sectors.  

To be more precise, the existing Australian approaches to flood risk assessment are of 

the traditional type, which relies only on a deterministic relationship between the type 
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or use of properties at risk, and the depth of water. In these methods, the variability of 

the real world and the uncertainty of the data have been neglected. In addition, the 

interaction and significance of most damage-influencing parameters are not taken into 

account. Hence, the outcomes are uncertain, and the performance is inaccurate. In 

addition, due to a lack of historical data, most Australian flood loss estimation models 

are not calibrated with actual damage data. Model calibration is an important factor for 

the accuracy of the outcome, especially when the water depth is the only hydraulic 

parameter taken into account (Cammerer et al., 2013; Chang et al., 2008; McBean et al., 

1986). Furthermore, few studies have also been conducted on the validation of 

Australian models. Model validation, in contrast to hydraulic inputs and flood 

information, has a more significant contribution to the preciseness of the performance 

for damage prediction, particularly when the model has been transferred in time and/or 

space (Apel et al., 2009; de Moel and Aerts, 2011; Merz et al., 2010; Meyer et al., 

2013). 

Another important parameter which affects the flexibility and precision of a model is 

the type of the damage model. Most existing Australian models are the absolute type, 

which is more rigid for transfer in time and space. For instance, the RAM report 

(Sturgess and Associates, 2000) claims that the outcomes of the ANUFLOOD approach 

(Smith, 1994), as one of the most commonly used Australian absolute models, should 

be increased by 60% since the model was prepared based on the empirical data collected 

in 1986. Furthermore, it is not recalibrated regularly based on the variation of market 

values and the inflation in costs of assets. Variation in the values of assets due to 

regional differences (i.e. the price of raw materials and wages) also reduces the 

flexibility and transferability of the absolute type flood damage models for use in a new 

study area (Merz et al., 2010).  

To cope with these challenges and to resolve these issues requires transparency and 

access to the logic behind the methods. In other words, to enhance the methods’ 

transferability, recalibrate the models regularly, validate the performances, or modify 

the parameters, the logic behind the approaches should be clear enough for the end users 
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and researchers. However, in this regard, a general lack of information is observed, and 

most approaches are published based only on a generic report (Hasanzadeh Nafari et al., 

2016b). Accordingly, the logic of these models is not transparent enough to access or 

understand, and the models are not flexible enough to generalise to other types of 

building or flood. 

1.3 Research scope 

The focus of this study is on the monetary cost of physical damage to urban buildings 

due to a short duration of riverine inundation. The spatial extent of damage estimation 

processes is micro-scale, and the target economic sectors are residential and commercial 

building structures.  

1.4 Research aims and objectives 

This research aims to develop a validated flood damage assessment framework for 

the geographical conditions (building specification and flood characteristics) of 

Australia using historical data collected from recent extreme events to inform disaster 

management policy in support of the development of risk reduction measures. A 

comprehensive flood damage model based on the local conditions of Australia can 

promote the assessment of economic impacts of an extreme flood event in the future, 

and the results will provide decision-makers with an essential tool for planning better 

risk mitigation strategies and actively responding to flood disasters. The specific 

objectives of this research are listed as follows: 

• To develop, calibrate, and validate some novel flexible multi-parameter flood damage 

assessment functions, considering the inherent uncertainty in the data sample, and the 

probabilistic relationship between the vulnerability features of the properties at risk 

and the depth of water. 

 

• To transfer the newly derived model to a study area overseas by checking the 

simplicity of utilising local empirical data, evaluating the accuracy of the outcome, 
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and assessing the ability to change parameters based on building practices across the 

world. 

 

• To establish a tree-based model for predicting the magnitude of damage and 

exploring the interaction, importance, and influence of different damage-influencing 

parameters on the extent of losses. 

 

• To evaluate and compare the predictive capability and the reliability of the newly 

derived flood loss estimation models after a temporal and spatial transfer. 

1.5 Thesis outline 

The outline of this thesis is described as follows: 

Chapter 2: Literature review 

A comprehensive literature review is conducted on the background of flood damage 

assessment, which describes the importance of damage assessment, the related 

definitions, the procedure of loss estimation (exposure analysis, exposure classification, 

influencing parameters and cost assessment), the focus of this study, and the related 

studies previously performed in this research area. Finally, the knowledge gaps in 

Australian models are discussed, which are addressed in this research. 

 

Chapter 3: Calibration and validation of FLFArs - a new flood loss function for 

Australian residential structures 

The function approach or flood loss function is an internationally accepted standard 

for the estimation of flood damages in urban areas. In addition, a considerable portion 

of urban flooding losses is allocated to the residential and commercial sectors. 

Accordingly, this part of the study has attempted to generate some novel multi-

parameter stage-damage functions for the common types of residential buildings in 

Australia. The functions are of the relative type and are calibrated and validated with 
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flood damage data collected in several disaster events. The advantages of this approach 

include a better level of transferability in time and space, the ability to utilise empirical 

data, the facility to change parameters based on building practices (different foundation 

height, ground elevation, percent of damages below ground, number of storeys, height 

of storeys, maximum damage as a percentage and the beginning elevation for damage) 

across the world, and the accuracy of the outcomes. Additionally, the study has 

illustrated a bootstrapping approach to the empirical data to consider the epistemic 

uncertainty of the data set and to assist in describing confidence limits around the flood 

loss function parameters.  

 

Chapter 4: Development and evaluation of FLFAcs - a new flood loss function for 

Australian commercial structures 

Having carried out the work for the residential sector, this study focuses on the 

development of a new multi-parameter stage-damage function for the commercial 

sector. Flood losses to commercial buildings affect the Australian economy 

considerably, and a significant portion of urban flood losses is usually dedicated to this 

sector. However, there are not many models for the estimation of flood damage to 

commercial buildings, and their results are not reliably accurate. Thus, there is an urgent 

need for a project to derive a new stage-damage function for Australian commercial 

properties. The newly derived flood loss function has all the advantages of the approach 

presented for residential properties and has been developed for the most common type 

of commercial buildings in Australia. 

 

Chapter 5: Flood loss modelling with FLF-IT: a new flood loss function for 

Italian residential structures 

In this chapter, the newly derived stage-damage function has been transferred to a 

study area in Italy to modify the model parameters based on local empirical data and 

building practices across the world. Accordingly, the model has been modified based on 
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empirical damage data collected from a recent flood event and a representative group of 

residential buildings in Italy. The performance of the newly derived model has been 

validated, and its predictive capacity has also been contrasted with other damage models 

frequently used in Europe. 

 

Chapter 6: An assessment of the effectiveness of tree-based models for multi-

variate flood damage assessment in Australia 

Flood damage is a complicated process, which might be dependent on a variety of 

parameters that are neglected in stage-damage functions. Accordingly, this part of the 

study has attempted to investigate and explore the interaction and significance of more 

damage-influencing parameters such as flow velocity, water contamination, 

precautionary measures, emergency measures, flood experience, floor area, building 

value, building quality and socioeconomic status. The study has used tree-based models 

and a historical dataset which includes information on damage extent, flood impact 

variables and resistance factors. Tree-based models are frequently used in the hydrology 

domain. However, this approach is relatively new in flood-loss modelling, and it has not 

been used for Australia. The newly derived models are calibrated using empirical data, 

and their performances are validated for predicting the extent of losses in flood events 

with the same geographical conditions (i.e. flood characteristics and building 

specifications) as the area of study. 

 

Chapter 7: Predictive applications of Australian flood loss models after a 

temporal and spatial transfer 

In this final part of this research, the authors have investigated the predictive capacity 

of the new flood loss models (i.e. flood loss functions and tree-based models) in 

assessing the extent of physical damages after a temporal and spatial transfer. The 

predictive power of these models is tested for precision, variation and reliability. The 

prediction capacity is also checked for some sub-classes of water depth and some 
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groups of building types. It has been shown that considering more details of the flood 

damage process can improve the transferability of damage prediction models. 

 

Chapter 8: Conclusions and recommendations 

The chapter summarises the major findings of this research and proposes potential 

study areas for future researchers. 

 

 

Figure 1-3: Thesis structure 
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2 LITERATURE REVIEW 

 

 

 

2.1 Overview 

Risk is defined as the probability and magnitude of expected damages as a result of 

hazard, exposure and vulnerability. Thus, damage estimation is the core element of risk 

assessment, and its outcome is substantial for decision-makers dealing with risk 

management, who need to prioritise risk mitigation options and choose the best 

practices. Loss reduction is one of the crucial concerns of decision makers, urban 

planners, insurance companies and engineers in terms of seeking to decrease the 

probability of risk from disasters. 

Flood is known to be the costliest natural disaster in Australia and the world (Fig. 2-

1). In recent decades, the extent of flood losses has increased due to climate change and 

urban consolidation, necessitating greater attention to flood risk management. While 

much effort has gone into emergency management and flood mapping, flood damage 

models are still crude, and understanding of the damage process is highly limited. 
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Figure 2-1: Cost of Natural Disasters in Australia (Bureau of Transport Economics, 2001) 

 

Flood damage estimation is an indispensable part of flood risk management, which is 

required for vulnerability assessment, risk map preparation, top priority locations 

identification, the optimal decision on mitigation options and financial appraisals 

fulfilment (Fig. 2-2) (Merz et al., 2010). Accordingly, flood impact assessment methods 

need to be more carefully considered to protect the population against the impacts of 

future flood scenarios, increase the resilience of communities and businesses, and 

decrease the probability of losses in a systematic way. 
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Figure 2-2: Flood Risk Assessment and Management Framework 

2.2 Definitions 

There is no common agreement on the meaning or use of some terminologies 

including impacts, damages, losses or costs (Molinari, 2011). However, they can be 

categorised into direct and indirect, tangible and intangible (Merz et al., 2010). Direct 
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damage (e.g. damage to properties and building contents) occurs due to the physical 

contact between floodwater and flooded objects during a flood event. Indirect damages 

(e.g. disruption of supply chain or public transport outside the flooded regions) are the 

induced effect of the direct losses, and they may happen outside of the flood boundary 

or after inundation (Fig. 2-3). Thus, it is obvious that the identification and 

quantification of indirect losses is a complicated process. In this context, tangible losses 

(e.g. damage to infrastructure and agriculture plants) can be expressed in monetary 

terms, while the extent of intangible groups (e.g. loss of life and injuries) cannot (see 

Table 2-1) (Hasanzadeh Nafari et al., 2016a). 

 

Figure 2-3: Flood impacts process (Hasanzadeh Nafari et al., 2013) 
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Table 2-1: Different types of flood damages (Molinari, 2011) 

Exposed object Damage Type 

Economic 

Residential buildings 

Structural damage, e.g. building fabrics Direct, tangible 

Contents damage, e.g. furniture Direct, tangible 

Additional cost, i.e. clean up Indirect, tangible 

Protective measures, e.g. sandbag Indirect, tangible 

Sentimental loss, i.e. loss of memorabilia  Indirect, intangible 

Commercial/industrial 

buildings 

Structural damage, e.g. building fabrics Direct, tangible 

Contents damage, e.g. products and stock Direct, tangible 

Additional cost, i.e. production interruption Indirect, tangible 

Protective measures, e.g. bund walls Indirect, tangible 

Sentimental loss, i.e. loss of memorabilia  Indirect, intangible 

Lifeline and 

infrastructures 

Physical damage, e.g. roads and bridges Direct, tangible 

Additional cost, i.e. supply chain disruption Indirect, tangible 

Additional cost, i.e. service disruption Indirect, intangible 

Public/service 

buildings 

Structural damage, e.g. building fabrics Direct, tangible 

Contents damage, e.g. movable inventories  Direct, tangible 

Additional cost, i.e. service disruption Indirect, tangible 

Protective measures, e.g. bund wall Indirect, tangible 

Sentimental loss, i.e. loss of memorabilia  Indirect, intangible 

Social Population 
Physical, e.g. life loss and injury Direct, intangible 

Psychological, e.g. trauma Indirect, intangible 

Environmental 
Agriculture plants  

and nature 

Physical loss, e.g. crop  Direct, tangible 

Additional cost, i.e. loss of income Indirect, tangible 

Additional cost, i.e. supply chain disruption Indirect, tangible 

Protective measures, e.g. sandbag Indirect, tangible 

Additional cost, i.e. service disruption Indirect, intangible 

Ecological damage and environmental goods Direct, intangible 

Sentimental loss Indirect, intangible 

 

Damages could be assessed or expressed as actual or potential. Potential damage 

means the maximum possible costs of flooding in the absence of any mitigation 

measures. Actual loss is the magnitude of real damages for a specific flood scenario and 

in the presence of real reduction actions (Gissing and Blong, 2004; Smith, 1994). 

The spatial scale of damage estimation processes may vary from micro- to meso- or 

macro-scales (see Fig. 2-4). The focus of damage assessment models with the micro-
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scale unit is on individual flooded objects or elements at risk, e.g. roads, buildings or 

bridges. However, by changing the spatial scale of models to the meso- or macro-scale, 

the spatial extent would be increased to land use units (e.g. commercial or residential 

zones and zip code areas) or large area regions (e.g. municipalities) (André et al., 2013; 

Jongman et al., 2012b).  

 

Figure 2-4: Flood damage assessment spatial scale 

 

 

The economic evaluation may be carried out based on the replacement cost or the 

depreciated value (i.e. the actual value at the time of inundation) of damaged 

components. Damage assessment based on the full replacement cost of old goods may 

lead to the overestimation of losses, while replacement could be cheaper than repair if 

the extent of damage is great or the damaged components are out of production 

(Hasanzadeh Nafari et al., 2016b; Merz et al., 2010).    
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Finally, based on the timing of the study, flood damage assessments are categorised 

into two main groups, namely ex-ante and ex-post. Ex-ante damage assessment is the 

estimation of the potential losses before the event. Ex-post damage assessment aims at 

coordination of response and recovery issues, and the assessment of costs after an event. 

Ex-post damage assessment results can also be used for the calibration of ex-ante 

damage assessment models (André et al., 2013). 

The rationale of damage assessment models, the boundary of inundation, the spatial 

scale of methods, the timing of the study, and the logic behind the study are dependent 

on the purposes of use and the sector of end-users. For instance, while insurance and 

reinsurance companies need to perform their appraisal based on their responsibilities, 

services and agreements; policy decision-makers may do this based on other concerns 

such as prioritisation of locations or selection of a set of risk mitigation options (Merz et 

al., 2010). 

 

➢ The focus of this study is on ex-ante direct, tangible damages of the flood. 
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2.3 General procedure for flood damage assessment 

Flood damage assessment can be fulfilled in the following steps (Hasanzadeh Nafari 

et al., 2013) (see Fig. 2-5): 

• Exposure analysis: assessing the number, dimension, and value of people and goods 

in a dangerous area using inundation and land-use maps; 

• Classification: categorising the flooded objects into homogeneous sectors or classes 

based on the type of use; 

• Damage-influencing parameters: evaluation the flood impact factors and vulnerability 

features for every class of exposure; 

• Cost assessment: making a relationship among the vulnerability factors, the impact 

parameters and the extent of losses for each category at risk. 

 

All steps of the general procedure are explained in more detail based on the focus of 

this study hereafter. 

 

Figure 2-5: General procedure for flood damage assessment 
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2.3.1  Exposure and assets analysis 

The exposure value is a function of time and space. Through time, the value of 

elements at risk may be subject to a variation due to inflation, renovation or age. On the 

other hand, the values of assets differ according to regional factors, e.g. price of raw 

materials and wages. Thus, the availability of an updated local dataset has a significant 

relationship with the accuracy of exposure analysis. Furthermore, exposure assessment 

as a result of an overlap between land-use data and inundation map can be carried out at 

the micro-, meso-, or macro-scales depending on the availability of data, the required 

accuracy and the aim of analysis (Merz et al., 2010).  

In Australia, the construction (replacement) costs proposed by Blong (2003) and the 

National Exposure Information System of Australia (2014) are the most commonly used 

model and dataset for exposure analysis (Blong, 2003; Dunford et al., 2014). The Blong 

(2003) micro-scale model represents the replacement cost of all building types per 

square metre. In this model, the replacement cost of a medium-sized residential building 

has been considered as the unit of assessment, and the construction costs of other 

buildings are compared with this unit. Accordingly, the variation in building type and 

the floor area are adjusted using the cost and replacement ratios (Blong, 2003).  

Geoscience Australia (GA) undertook the development of the National Exposure 

Information System (NEXIS) at the SA1 (Statistical Area Level 1) spatial scale. NEXIS 

is a comprehensive meso-scale dataset which aims to capture all exposure information 

of residential, commercial and industrial buildings across Australia. The dataset 

includes information about (Dunford et al., 2014): 

• People: population estimate based on the Australian Bureau of Statistics (ABS) 2011, 

residents’ income, ownership status, age, level of education and other socioeconomic 

factors; 

• Buildings: sectors or economic activities, type of building, construction type (e.g. 

wall and roof materials), number of storeys, age, areas, replacement cost of structures 

and its contents, and other parameters that contribute to how a building resists 

impacts. 
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2.3.2 Classification 

Damage assessment for every individual element at risk is impossible since the 

required data (i.e. a dataset that shows the relationship between flood impacts and 

resistance factors) is not available. Even if the data were available, the analysis would 

be time-consuming as it would need a considerable effort. Therefore, the exposed 

components should be classified into homogeneous groups, and damage assessment 

should be done for each class of element at risk. This homogeneity can be discussed 

based on the similarity of the behaviour against the impacts of flood for one class and a 

significant difference compared to other classes (Merz et al., 2010). In this regard, 

Smith (1994) proposes that the socioeconomic factors (e.g. household income) of the 

population in a region with a significant variation of dwelling types, like the UK, may 

influence the resistance of one economic sector (e.g. residential buildings) (Smith, 

1994). Thus, considering a higher level of classification could be useful. Further, 

Kreibich and Dimitrova (2010) and Kreibich and Thieken (2008) recommend the 

classification of damaged components based on inundation types (e.g. flash flood, 

overland flow, riverine flood) (Kreibich and Dimitrova, 2010; Kreibich and Thieken, 

2008). The other important factor is the availability of data. Defining very detailed 

classes without having the support of sufficient data leads to a high level of uncertainty 

in the outcome. 

Accordingly, an initial classification can be done based on the social and/or economic 

functions of affected areas (e.g. residential buildings, commercial buildings, industrial 

buildings, public sectors, infrastructure and agriculture). This categorisation, as 

explained earlier, is recommended due to the different characteristics and their 

behaviour, and the variation in flood damage-influencing parameters. For instance, 

while studies show that water depth is the most significant damage-influencing 

parameter for urban residential buildings (Cammerer et al., 2013), damage to 

agricultural plants is mostly dependent on the time and duration of the flood (Merz et 

al., 2010). Further to this classification, each category, as discussed above, can also be 

divided into sub-classes. For instance, FLEMOps and FLEMOcs, two German models 
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for the private and commercial sectors, have defined some sub-classes based on the size 

of the property, the type of dwelling, the quality of structure, and the function of the 

building (Kreibich et al., 2010; Thieken et al., 2008).  

Geoscience Australia (GA) has developed some damage models for residential and 

industrial buildings, and the sub-classes are defined based on the size of buildings, the 

construction materials, the presence of garages, and the number of storeys (Geoscience 

Australia, 2012). The United States Federal Emergency Management Agency (FEMA) 

and Army Corps of Engineers (USACE) defines the detailed classes based on the 

number of storeys and the presence or absence of a basement (USACE, 2003). 

2.3.3 Damage-influencing parameters 

Damage-influencing parameters can be grouped into flood actions and building 

resistance parameters (Table 2-2). The most significant actions of the flood, depending 

on the inundated area as discussed above, are water depth, lateral pressure, flow 

velocity, flood duration, water contamination, sediment load, timing, and inundation 

frequency (Gissing and Blong, 2004; Kelman and Spence, 2004; Merz et al., 2013). The 

resistance parameters could be classified as building characteristics, private precaution, 

early warning, emergency measures, flood experience and socioeconomic status 

(Hasanzadeh Nafari et al., 2016c; Thieken et al., 2005). The resistance factors which 

represent the capacity or incapacity of an inundated object against the impacts of the 

flood may be independent of or dependent on each other (e.g. individual preparedness 

and early warning are not independent of each other). Thus, flood damage assessment is 

a complicated process and understanding the single or joint effects of the influencing 

parameters needs a comprehensive analysis. However, most of the available traditional 

methods have neglected these parameters, relying only on the type and function of 

objects at risk and the stage of flood water. The reason could be related to a general 

tendency for using a simplified approach in the industry (e.g. stage-damage functions), 

or a lack of reliable data (Cammerer et al., 2013; Hasanzadeh Nafari et al., 2016c). 
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Nevertheless, some studies have attempted to consider more damage-influencing 

parameters. In this regard, Wind et al. (1999); Penning-Rowsell and Green (2000); 

Smith (1994); and Parker et al. (2007) attempted to evaluate the effects of some non-

structural resistance measures such as early warning and private precaution (Parker et 

al., 2007; Penning-Rowsell and Green, 2000; Smith, 1994; Wind et al., 1999). The 

FLEMO multi-parameter model from Germany (i.e. for private and commercial sectors 

in the micro- and meso-scale), the conceptual model of Nicholas et al. (2001) from the 

UK, and the non-calibrated model of Zhai et al. (2005) in Japan are other examples 

(Elmer et al., 2010; Kreibich et al., 2010, 2007, 2005; Kreibich and Thieken, 2008; 

Nicholas et al., 2001; Seifert et al., 2010; Thieken et al., 2008, 2006, 2005; Zhai et al., 

2005). Recently, Vogel et al. (2013) used a Bayesian network, and Merz et al. (2013), 

Chinh et al. (2015), and Hasanzadeh Nafari et al. (2016c) used tree-based data mining 

approach to analyse the whole gamut of influencing factors, and assess their single or 

joint effects in a more comprehensive way (Chinh et al., 2015; Hasanzadeh Nafari et al., 

2016c; Merz et al., 2013; Vogel et al., 2013).  
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Table 2-2: Damage-influencing parameters including flood impacts and resistance factors   

Divisions Influencing Parameters 

Impact parameters Hazard intensity 

Depth 

Velocity 

Contamination 

Duration 

Sediment load 

Frequency 

Timing 

Resistance parameters 

Emergency measures Emergency actions 

Precaution and experience 

Precaution actions 

Former flood experience 

Building specifications 

Quality of property 

Value of property 

Floor space per person 

Socioeconomic situation 

Residents need assistance 

Ownership status 

Monthly income 

Low education residents 

 

2.3.4 Cost assessment 

Traditionally, two approaches are identified for the assessment of direct damages: 

averaging method and stage-damage function (Molinari, 2011). In Australia, the rapid 

appraisal method (RAM) is the most common averaging model for the estimation of 

direct losses (Sturgess and Associates, 2000). The method recommends an average 

value of damage for every flooded building. While the method is inexpensive and 
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helpful for rapid assessment, the outcomes are uncertain and inaccurate (Barton et al., 

2003; Gissing and Blong, 2004).  

Although flood damage assessment is a complicated process, the stage-damage 

function due to its simplicity is an internationally accepted approach for flood loss 

estimation (Cammerer et al., 2013; Thieken et al., 2006). Stage-damage functions depict 

a causal relationship among flood actions (e.g. the depth of water), vulnerability 

features (e.g. the building type), and the extent of losses (i.e. the percentage of damage 

or the monetary value of loss) (see Fig. 2-6) (Jongman et al., 2012a; Smith, 1994). 

 

 

Figure 2-6: Visualisation of a relative stage-damage function 

 

Damage functions are classified as relative or absolute, and as empirical or synthetic. 

Relative functions express the magnitude of losses as a percentage of the total value of 

the damaged property (i.e. the depreciated value or the replacement cost), while 

absolute functions show the extent of damages in fiscal values (André et al., 2013; 

Hasanzadeh Nafari et al., 2017). The FLEMO, HAZUS and USACE methods are 

examples of the first type (Kreibich et al., 2010; Scawthorn et al., 2006; Thieken et al., 
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2008; USACE, 2003) and an example for the second approach is ANUFLOOD (Smith, 

1994). Empirical functions (e.g. ANUFLOOD) are derived based on real damage data 

collected from real-world events, while the synthetic method (e.g. Geoscience 

Australia) relies on an analytical approach and what-if questions to estimate the 

magnitude of damage for every stage of water (e.g. what is the level of damage if the 

stage of water reaches to 1-m above the first floor). It is possible to have an empirical-

synthetic method which combines both approaches (e.g. USACE) (Hasanzadeh Nafari 

et al., 2017). All these approaches have advantages and disadvantages, which are 

compared below (Table 2-3 and 2-4). 

As stated earlier, many researchers have attempted to improve the accuracy and 

transferability of stage-damage functions by moving away from a traditional approach 

(i.e. relying only on the type or use of a flooded object and the stage of water) into a 

new approach which uses multi-parameters and probabilistic analysis (Schröter et al., 

2014a). Furthermore, tree-based models and Bayesian network techniques have been 

used recently for studying the influencing parameters and predicting the extent of 

damages. 

Flood loss models (whether stage-damage functions or tree-based models) are sharply 

restricted to the features of the area of origin (i.e. flood features and building 

characteristics) (Hasanzadeh Nafari et al., 2016a). Thus, transferring the damage models 

to a new study area and/or a new flood event does not result in an accurate relationship 

between the extent of damages and the impacts of flood, unless the models have been 

calibrated with an empirical dataset collected from the new case study (Cammerer et al., 

2013; Luino et al., 2009; Oliveri and Santoro, 2000). This loss of accuracy naturally 

reduces predictive capacity (Schröter et al., 2014b). On the other hand, the largest effect 

on loss estimation is induced by the shape of the applied damage models, while 

precision in collecting hydraulic input and flood characteristics is of minor importance 

(Apel et al., 2009; de Moel and Aerts, 2011). Therefore, validation of flood loss models 

is one important step in model development (Cammerer et al., 2013; Schröter et al., 

2014b). However, due to a lack of historical data, little research has been done on the 



Chapter 2: Literature Review 

 

-28- 

 

validation of models, especially when they are subjected to temporal and/or spatial 

transfer (Merz et al., 2010; Meyer et al., 2013; Seifert et al., 2010; Thieken et al., 2008), 

and Australia is no exception.  

Table 2-3: Advantages and disadvantages of empirical and synthetic models (Merz et al., 2010) 

 Advantages Disadvantages 

Empirical models 

Greater accuracy due to utilisation of 

real damage data. 

 

Effects of damage reduction options 

can be considered. 

 

Variability of the real-world objects 

and uncertainty of the empirical data 

can be taken into consideration.  

Data collection is challenging since 

post-disaster damage survey is not a 

common activity. 

 

Need for extrapolation due to a lack 

of information about different types 

of flood.  

 

Rigid for transferring in space or time 

due to the variation of the building 

characteristics and mitigation 

measures. 

Synthetic models 

Damage calculation is possible for 

every stage of water. 

 

More flexible for transferring in space 

or time due to the independence of 

real-world data. 

Data gathering and detailed analysis 

are complicated and time-consuming 

even for one type of building. 

 

Effect of flood damage mitigation 

measures is neglected. 

 

The subjective analysis may lead to 

the uncertain estimation of loss. 

Table 2-4: Advantages and disadvantages of relative and absolute models (Merz et al., 2010) 

 Advantages Disadvantages 

Relative models 

More flexible for transferring in space 

or time due to the independence of 

market variations. 

 

Simplicity in use for different 

purposes. 

Asset value is needed for 

multiplying by the damage ratios, 

and this matter may add additional 

uncertainty.  

Absolute models 

Asset value is not required, and 

damage monetary values can be 

calculated directly. 

More rigid for transferring in space 

or time. 

 

Need regular re-calibration due to 

inflation and changes in market 

values. 
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2.4 Economic Sectors 

As stated above, one of the main influencing factors for model classification is the 

economic activity of the exposed object. Studies show that the behaviour (i.e. resistance 

or vulnerability) of inundated properties against the impacts of flood and the type of 

assets are a function of the property’s economic function. Thus, sector-based 

categorisation is a mostly accepted method of model classification. The most common 

economic sectors utilised for this classification are the residential sector, industrial 

sector, commercial sector, public service, lifelines, infrastructure and agriculture sector 

(Merz et al., 2010).  

The summary of the aspects of flood loss estimation is represented in Table 2-5. 

➢ The focus of this study is on ex-ant direct, tangible damages of the flood in 

urban areas. The spatial extent of damage estimation processes is on the micro-

scale, and the target economic sectors are residential and commercial building 

structures. 

 

Accordingly, in the next sections, the existing flood damage models related to the 

residential and commercial economic sectors which are frequently used in the world and 

Australia will be compared and discussed. 
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Table 2-5: Summary of the aspects of flood loss estimation 

Damage 

category 

Damage 

type 

Spatial 

Scale 

Economic 

value 

Timing Exposure Influencing 

parameters 

Development Economic 

sectors 

Direct 

Indirect 

Tangible 

Intangible 

Potential 

Actual 

Micro 

Meso 

Macro 

Replacement  

Depreciated  

Ex-ante 

Ex-post 

Social 

Economic 

Environmental 

Flood impacts 

(e.g. depth, and 

velocity) 

Resistance factors 

(e.g. material and 

early warning) 

Relative 

Absolute 

Empirical 

Synthetic 

Empirical-

synthetic 

 

Residential 

Industrial 

Commercial 

Public  

Lifeline 

Infrastructure  

Agriculture 
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2.4.1 Residential sector 

The residential sector has attracted the attention of most researchers since a 

considerable portion of urban flooding losses is dedicated to residential buildings. 

Accordingly, in this study, only a few well-known examples will be compared. The 

RAM model is an averaging method from Australia. This model recommends an 

average value of potential damage ($20,500) for every inundated residential building. 

This value of damage includes damages to contents and the structure, and it should be 

applied to all flooded buildings including those flooded above or below the first-floor 

level. The method is empirical-synthetic, and the extent of potential losses could be 

changed to actual values using recommended coefficients based on the previous 

experiences of flooding and the effective time of early warning (Hasanzadeh Nafari et 

al., 2016a; Sturgess and Associates, 2000).   

FLEMOps is an empirical relative damage model. The empirical data has been 

collected by computer-aided telephone interviews from 1697 flooded households after 

the August 2002 event (see Fig. 2-7). The influencing parameters considered in this 

model are water depth (five groups), water contamination (three groups), building type 

(three categories), building quality (two classes) and private precaution measure (three 

levels) (Thieken et al., 2008). 
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Figure 2-7: FLEMOps model for the estimation of residential building structures flood losses 

(Thieken et al., 2008) 

 

USACE is a model developed by the United States Federal Emergency Management 

Agency (FEMA) and Army Corps of Engineers (USACE). This model is an empirical-

synthetic approach that expresses the magnitude of losses as a percentage of building 

value. The considered parameters are the depth of water, the number of storeys and the 

presence of garage (Fig. 2-8). Also, the model represents the percentage of damage for 

building fabrics and contents separately (Comiskey, 2005; USACE, 2003). 
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Figure 2-8: USACE model for the estimation of residential building structures flood losses 

 

The other model has been derived by Geoscience Australia (GA) for Queensland and 

South Sydney. It is a synthetic relative model that represents the damage of building 

structure and contents separately. This method has classified the stage-damage functions 

based on some properties of buildings such as material, size, number of storeys and 

availability of a basement. Also, water depth is the only hydraulic input of this model 

(see Fig. 2-9) (Geoscience Australia, 2012). 

Table 2-6 shows the summary of the comparison of four flood damage models for 

residential sector. 
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Figure 2-9: GA model for the estimation of residential building structures flood losses (FCM1: one 

storey, raised timber floor, lightweight cladding, no basement) (Geoscience Australia, 2012) 

 

Table 2-6: Comparison of four flood damage models for residential sector 

Model Country Development Function Type Influencing Parameters 

FLEMOps Germany Empirical Relative 

water depth, water 

contamination, building type, 

building quality, and private 

precaution measure 

GA Australia Synthetic Relative 

water depth and building type 

(material, size, number of 

storeys, and availability of 

basement) 

USACE USA Empirical-synthetic Relative 

water depth and building type 

(number of storeys, and 

availability of basement) 

RAM Australia Empirical-synthetic Absolut lead time, flood experience 
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Knowledge gaps in Australian models 

The gaps which are recognised in Australian models are as follows (Hasanzadeh 

Nafari et al., 2016b): 

• Due to a lack of empirical data most damage models are synthetic, they are not 

calibrated with empirical data, and few studies have been conducted on the validation 

of results; 

• Most approaches are absolute which is more rigid and does not easily transfer across 

time and space; 

• To the best of our knowledge, all approaches are of the traditional type which relies 

only on a deterministic relationship between the type or use of properties at risk and 

the depth of water; 

• The interaction of most damage-influencing parameters and the uncertainty of data 

are neglected. 

As is discussed in more detail below, this study has attempted to address the above 

issues and to close the gaps. 

2.4.2 Commercial and industrial sector 

This part of the study has also compared some well-known flood damage models for 

the estimation of commercial building flood losses. In Australia, RAM and 

ANUFLOOD are the most commonly used flood damage models. As explained 

previously, RAM is an averaging method which considers some mean values of damage 

for each inundated building. The mean values are the total value of the structural and 

content losses and should be applied to all inundated buildings including those flooded 

above or below the first-floor level. For commercial buildings with an area less than 

1000 m2 the suggested damage value is the same as for residential buildings ($20,500). 

However, for large commercial buildings with an area more than 1000 m2 in size, the 

method has suggested three values ($45, $80, and $200 per square meter) of damage 

depending on the value of contents in the property (see Table 2-7). All damage values 

are potential losses, and they can be converted to actual losses using some coefficients 
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and by considering the previous experiences of flooding and the early warning time 

(Hasanzadeh Nafari et al., 2016a; Sturgess and Associates, 2000). 

Table 2-7: Average potential damage for large commercial buildings (Sturgess and Associates, 

2000) 

 

 

ANUFLOOD (Smith, 1994) is an empirical approach prepared based on the data 

from the 1986 flood event in Sydney. Similar to RAM, this approach is an absolute 

model which estimates the total value of damage including structural and content losses. 

ANUFLOOD represents some potential stage-damage functions classified based on the 

size of the property (i.e. smaller than 186 m2, between 186 m2 and 650 m2, and larger 

than 650 m2) and the vulnerability of the business’s contents. Damage values, for small- 

and medium-sized businesses are expressed in dollars; while for the large-sized 

properties, the values are given in dollars per square metre. Similarly to RAM, the 

potential damage costs could be changed to actual values using some convert 

coefficients (Bureau of Transport Economics, 2001; Gissing and Blong, 2004; 

Hasanzadeh Nafari et al., 2016a).  

The other method considered in this study is FLEMOcs (Kreibich et al., 2010). This 

multi-parameter stage-damage function is a relative empirical method derived based on 

the data collected from 642 inundated businesses via telephone surveys after the floods 

of 2002, 2005 and 2006 in Germany. This method defined five classes of water depth 

(<21 cm, 21–60 cm, 61–100 cm, 101–150 cm, and >150 cm), three groups of company 

size (1–10, 11–100, >100 employees), and four categories of economic activity (public 
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and private sectors; production industry; corporate services and trade). Based on these 

classifications, the magnitude of damage could be estimated separately for buildings, 

equipment and goods (products and stock) (Fig. 2-10). Also, the impacts of water 

contamination and private precautions could be taken into consideration by using some 

scaling coefficients (Hasanzadeh Nafari et al., 2016a; Kreibich et al., 2010; Seifert et 

al., 2010).  

 

Figure 2-10: FLEMOcs model for the estimation of commercial building structures flood losses 

(Kreibich et al., 2010) 

 

Table 2-8 shows the summary of the comparison of three flood damage models for the 

commercial sector. 
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Table 2-8: Comparison of three flood damage models for the commercial sector (Merz et al., 2010) 

Model Country Development Function Type Influencing 

Parameters 

FLEMOcs Germany Empirical Relative 

water depth, water 

contamination, 

company size, 

economic sector, 

and private 

precaution measure 

ANUFLOOD Australia Empirical Absolute 

water depth, 

company size, the 

vulnerability of the 

contents  

RAM Australia 
Empirical-

synthetic 
Absolute 

company size, 

content value, lead 

time, flood 

experience 

 

Knowledge gaps in Australian models 

The gaps which are recognised in the most commonly used Australian models are 

identified as follows (Hasanzadeh Nafari et al., 2016a): 

• The RAM method, due to neglecting the variation in hydraulic impacts and the 

differences of building resistance parameters, does not represent the distribution of 

the losses over a flooded area. Also, its outcome is uncertain and inaccurate; 

• Most approaches (e.g. RAM and ANUFLOOD) are of the absolute type which is 

more rigid and does not easily transfer across time and space, or they are of the non-

calibrated synthetic type; 

• Most approaches calculate the total potential value of losses including building and 

content damages. Thus, due to the different nature of movable contents from 

structural fabrics with lead-time, the exchange of potential losses into actual values is 

problematic; 
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• To the best of my knowledge, all approaches have neglected the uncertainty of data, 

and they have been derived based on a deterministic relationship between type or use 

of properties at risk and depth of water.  

As is discussed in more detail below, this study has attempted to address the above 

issues and to close the gaps. 

2.5 Conclusions 

The previous parts of this study covered the related definitions of flood loss 

estimation, discussed the general procedure for flood damage assessment, clarified the 

focus of this study, reviewed some well-known methods of flood cost estimation and 

listed the most significant gaps in Australian approaches. The following key issues and 

suggestions could be concluded: 

 

• Flood damage is a complicated process and is controlled by a variety of influencing 

parameters which are mostly neglected. This matter has been distinguished as a 

source of uncertainty and requires more attention. The most influential parameters 

could be classified into flood intensity factors including depth of water, flow velocity, 

return period, duration, frequency and contamination of water; and building flood-

resistant indicators including the materials and characteristics of the property, 

individual precautionary and emergency actions, early warning time and 

preparedness, and the former flood experience and socioeconomic situations of 

residents. Accordingly, data mining techniques and multi-parameter damage models 

should be used for exploring the interaction and the importance of different damage-

influencing parameters, and understanding the flood loss processes. 

 

• Considering the variability of the real-world and the uncertainty of the data as other 

important steps in improving models. Accordingly, relying on probabilistic rather 

than deterministic methods, and increasing the size of datasets using random 

sampling approaches, are recommended. 
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• Developing a relative empirical-synthetic model leads to a better level of accuracy in 

results and transferability in time and space. The new model should be simplified 

enough for understanding, updating or performing modifications based on the 

variability of the geographical conditions across the world.  

 

Ultimately, the main sources of uncertainty of flood damage models could be related 

to the lack of reliable damage data, the transfer in the geographical area of damage 

models, the use of invalidated models, and variability in real-world events and 

behaviours (Cammerer et al., 2013; Merz et al., 2010; Meyer et al., 2013). Considering 

the above-mentioned suggestions and issues, this study has attempted to develop some 

new flood loss estimation models for the geographical conditions (i.e. flood 

characteristics, non-structural resistance parameters, and building specifications) of 

Australia with better performance, which enhances the accuracy of the outcome and the 

reliability of the results. 
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3 CALIBRATION AND 

VALIDATION OF FLFArs     

A NEW FLOOD LOSS FUNCTION FOR AUSTRALIAN 

RESIDENTIAL STRUCTURES [Published Chapter]1 

 

 

 

3.1 Abstract 

Rapid urbanisation, climate change and unsustainable developments are increasing the 

risk of floods. Flood is a frequent natural hazard that has significant financial 

consequences for Australia. The emergency response system in Australia is very 

successful and has saved many lives over the years. However, the preparedness for 

natural disaster impacts in terms of loss reduction and damage mitigation has been less 

successful. In this chapter, a newly derived flood loss function for Australian residential 

structures (FLFArs) has been presented and calibrated by using historic data collected 

from an extreme event in Queensland, Australia that occurred in 2013. Afterwards, the 

performance of the method developed in this work (contrasted to one Australian model 

and one model from the USA) has been compared with the observed damage data 

                                                 

1 Hasanzadeh Nafari, R., Ngo, T., Lehman, W., 2016. Calibration and validation of FLFArs – a new flood 

loss function for Australian residential structures. Nat. Hazards Earth Syst. Sci. 16, 15–27 
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collected from a 2012 flood event in Maranoa, Queensland. Based on this analysis, 

validation of the selected methodologies has been performed in terms of Australian 

geographical conditions. Results obtained from the new empirically based function 

(FLFArs) and the other models indicate that it is apparent that the precision of flood 

damage models is strongly dependent on selected stage-damage curves, and flood 

damage estimation without model calibration might result in inaccurate predictions of 

losses. Therefore, it is very important to be aware of the associated uncertainties in 

flood risk assessment, especially if models have not been calibrated with real damage 

data. 

3.2 Introduction 

Studies have shown that compared to other types of natural hazards, floods are a 

considerable threat to a nation’s economy, the built environment, and people (André et 

al., 2013; Kourgialas and Karatzas, 2012; Llasat et al., 2014; UNISDR, 2009). 

Furthermore, in recent decades, the flood risk due to climate change and the growth in 

value and vulnerability of exposed properties has been increasing exponentially (Elmer 

et al., 2012; Kundzewicz et al., 2005), which subsequently raises the significance of 

flood risk management. Flood damage assessment in order to mitigate the probability of 

expected losses is an important part of the risk management process (André et al., 2013; 

Elmer et al., 2010; Kaplan and Garrick, 1981), and the results will provide decision-

makers, emergency management organisations, and insurance and reinsurance 

companies with a tool for planning better risk mitigation strategies to cope with future 

disasters (Emanuelsson et al., 2014; Merz et al., 2010).  

In general, there is no common agreement among terms such as damage, loss and 

impact, but flood damage can either be categorised as direct or indirect. The direct 

category occurs due to physical contact between the floodwater and the inundated 

objects, and the indirect category is based on the effects of direct damage on a wider 

scale of space and time (Meyer et al., 2013; Molinari et al., 2014a; Thieken et al., 2005). 

Both categories can be evaluated as marketable (tangible) or non-marketable 
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(intangible) values (André et al., 2013; Kreibich et al., 2010). The focus of this chapter 

is on direct, tangible damages to residential building structures due to a short duration of 

riverine (low-velocity) inundation.  

Direct tangible damages of floods before they occur can be estimated by an averaging 

method such as the rapid appraisal method (RAM) or by function approaches such as 

depth-damage curves (Molinari, 2011). The RAM is a simplified method for flood 

damage estimation in the absence of data required for using depth-damage curves 

(Sturgess and Associates, 2000). This method considers mean unit values of damage for 

all buildings in the inundated area. Although RAM is useful for early assessment of the 

magnitude of damage, the results are considerably inaccurate (Barton et al., 2003).  

The function approach is a common and internationally accepted methodology for 

estimating the relative or absolute value of losses via a causal relationship among the 

magnitude of the hazard (e.g. the depth of water), the level of vulnerability (e.g. the 

building type), and the expected damages (Dewals et al., 2008; Jongman et al., 2012; 

Kreibich and Thieken, 2008; Molinari et al., 2014b; Smith, 1994; Thieken et al., 2006). 

This approach varies from traditional functions, i.e. functions which are solely based on 

the type or use of an element at risk and the water depth, to multi-parameter 

probabilistic loss models (Merz et al., 2013; Schröter et al., 2014). It is worth noting 

that these functions are strongly restricted to the area of origin, and transferred functions 

to a new geographical condition do not establish an appropriate relationship between the 

magnitude of the flood and the value of losses unless they have been adapted and 

calibrated with the conditions of the new region of study (Cammerer et al., 2013; 

Molinari et al., 2014b). Therefore, one important step in model development is model 

validation. In general, obtaining a reliable estimation of flood consequences by using a 

depth-damage function with an accurate and calibrated shape is considered more 

necessary than precision in collecting hydraulic inputs and flood characteristics (Apel et 

al., 2009).  

Due to a lack of historic data, few studies have been conducted to explore the 

validation of well-known overseas methodologies in other flood-prone regions 
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(Cammerer et al., 2013), and also for calibrating local Australian methodologies with 

empirical data. This chapter aims to present a new flood loss model (FLFArs) for the 

Australian geographical conditions by using historic data collected from an extreme 

event that occurred in the Bundaberg region of Queensland, Australia in 2013. In 

addition, the accuracy of the results obtained from the newly derived model and two 

existing models was compared using historic data collected from the Maranoa flood 

event (2012).  

3.3 Background 

Stage damage curves have been grouped into two main classifications: empirical and 

synthetic curves. Empirical curves build on surveyed damage data. They estimate the 

actual damage as they take into account the effect of mitigation measures. Also, 

variability within one category of building and water depth is reflected by the surveyed 

damage data (Kreibich et al., 2005; Merz et al., 2010, 2004). However, Smith (1994) 

discussed that by moving in time and space, the warning time, level of preparedness in 

society, and the characteristics of a building could vary considerably. Therefore, 

gathering data from one actual flood event and using it as a guide for future events in a 

new area of study, or even in the area of origin, requires a complicated process of 

extrapolation (Gissing and Blong, 2004; Smith, 1994). In other words, extrapolation of 

empirical damage curves to different regions is difficult due to differences in the level 

of precaution and differences in building characteristics (Barton et al., 2003). As a 

solution, synthetic curves based on a valuation survey have been created for different 

types of buildings. Valuation surveys refer to the value and elevation of all components 

that are located above the basement. This means that by using valuation surveys, an 

average distribution of building fabrics in the height of the structures would be extracted 

(Barton et al., 2003). Afterwards, the magnitude of potential damage for different water 

levels via “what-if” questions is estimated based on their average distribution in the 

height of the structure and the level of vulnerability of each component (Gissing and 

Blong, 2004; Merz et al., 2010).  
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Based on the valuation survey, several synthetic local damage curves have been 

prepared for Queensland, Victoria and New South Wales. Most of the synthetic 

methodologies prepared for Australia are not calibrated with empirical loss data, and 

few studies have been done on result comparison and uncertainty estimation. As 

mentioned earlier, these curves will estimate the potential damage based on “what-if” 

questions. Potential losses are the maximum possible value of losses without 

considering any mitigation measures (Bureau of Transport Economics, 2001; Molinari, 

2011; Molinari et al., 2013). Usually, potential damage is the greatest value of losses, 

and its magnitude is more than the actual damage (Molinari, 2011; Molinari et al., 

2013). To address this issue and increase the level of accuracy, FLFArs has been 

calibrated with an empirical database.  

Functional approaches can also be categorised as absolute and relative types. 

Absolute functions express the magnitude of damages in monetary values, while 

relative types estimate the dimension of losses as a ratio of the total value, i.e. 

replacement value or depreciated value (Kreibich et al., 2010). Almost all of the 

approaches available in Australia are absolute. These types of curves, compared to 

relative damage curves, are less flexible for moving in the spatial scale or time since 

they are dependent on changes in market values (Merz et al., 2010). For instance, the 

RAM report (Sturgess and Associates, 2000) claims that the magnitude of damage 

estimated by ANUFLOOD curves (Gissing and Blong, 2004; Smith, 1994) should be 

increased by 60%. The reason for this is related to the fact that these curves were 

prepared based on data from a 1986 flood in Sydney, and also due to changes in the 

value of the dollar compared to today’s value. Hence, their results are no longer reliable. 

Also, some updated absolute approaches such as that used in Nerang, Queensland, 

prepared by Gold Coast City Council (Barton et al., 2003), are restricted to the area of 

origin. In transferring such curves to a new study area of Australia, the differences in 

the replacement value of the exposed items or repair costs of assets will decrease the 

reliability of the results. With regard to moving in space or time, and compared to the 

available methodologies, the authors have tried to increase the level of flexibility of the 

newly derived model. 
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A general lack of data regarding the logic behind existing state reports and their 

methods is observed by end users and researchers in Australia. To be more precise, a 

number of methods have been identified, such as the Geoscience Australia model 

(Geoscience Australia, 2012), and the NSW government curves (Office of Environment 

and Heritage; New South Wales Government, 2007), but no specific detailed literature 

has been published about them. However, the new method developed in this research 

(FLFArs), in addition to its flexibility and transferability in time and space, is simple 

enough to understand and generalise to other types of buildings and vulnerability 

classes.  

Although the detailed valuation survey proposed by Smith (1994) seems a little 

complicated and time-consuming even for data gathered from one type of building 

(Merz et al., 2010), the new model for evaluating the assembly items and tracking the 

vertical parameters by considering more general categories, has attempted to simplify 

the process as much as possible. 

3.4 The Newly Derived Loss Model (FLFArs) 

The residential synthetic stage-damage curves can be developed by employing the 

following steps (Bureau of Transport Economics, 2001): 

• Based on the characteristics of buildings in the area of study (e.g. material and size), 

some representative classes should be selected.  

• For each selected class, an average distribution of the assembly items in the height of 

the buildings should be extracted. 

• Finally, based on the average value of the flooded items relative to the total value of 

the building and the degree of fragility of each item, stage-damage curves for 

different depths of water can be constructed. 

As mentioned above, the disadvantage of the synthetic methodology may be 

attributed to the significant effort in gathering data and details for the valuation survey, 

in addition to ignoring the effect of early warning and damage mitigating actions (Merz 

et al., 2010). For resolving the first issue, a more general and simplified method has 
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been followed by this study. For resolving the second issue, the results of this study 

have been calibrated with the relevant empirical data set. To be more specific, four 

common vulnerability classes and building types for the selected area of study in 

Australia have been considered: 

• one-storey buildings with masonry walls and slab-on-ground construction; 

• two-storey buildings with masonry walls and slab-on-ground construction; 

• one-storey buildings with timber walls and slab-on-ground construction; and 

• two-storey buildings with timber walls and slab-on-ground construction. 

This selection has been made based on the data collected from the national exposure 

information system of Australia (Dunford et al., 2014). This data set shows that 74 % of 

residential buildings in our areas of study are made with masonry and timber walls. 

Moreover, 99 % of these buildings are one and two- storeys high. Also, assembly items 

of the buildings based on the proposal of the HAZUS technical manual (FEMA, 2012) 

have been categorised into five general groups: 

• foundation and below first floor, which includes site work, footings, walls, slab, piles, 

and items that are located below the first floor of the structure; 

• structure framing, which includes all of the main load carrying members below the 

roof and above the foundation; 

• roof covering and roof framing; 

• exterior walls, which includes wall coverings, windows, exterior doors and 

insulation; and 

• Interiors, which includes interior walls and floor framing, drywall, paint, interior 

trims, floor coverings, cabinets, and mechanical and electrical facilities.   

The general methodology is to describe the damage for each stage of water using a 

general function. Based on the recommendations of the HAZUS technical manual 

(FEMA, 2012) and the knowledge of experts, different sub-assembly groups start 

damaging in different stages of flood. In other words, the first non-zero percentage of 

damage for each group will occur after a specific level of total damage of the building 
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and subsequently to different water depths. This fact shows that the slope of the damage 

curves could vary based on an exponential equation (Cammerer et al., 2013; Elmer et 

al., 2010; Kreibich and Thieken, 2008). On the other hand, as described in detail by the 

HAZUS technical manual and the Australian construction cost guide (Rawlinsons, 

2014), the replacement value of interiors and exterior walls, which start damaging from 

the first stage of water, are about 70 % of the total replacement value of the building. 

This means that for the first few metres of flood, the rate of damage due to storing the 

utility facilities is greater than the remaining stages. Therefore, the power of the 

following exponential equation (1) can control the rate of change in the percentage of 

damage compared to the increment of water depth. The accurate value of r for each 

vulnerability class will be extracted based on empirical data, but we can say that in 

general, a higher value for r means faster inclines at lower depths, which results in 

damage occurring more quickly in the first few metres of each floor. The formula for a 

one-storey building could be considered as  

max

1

D
H

h
d

r

h 







=            (1) 

where hd  is the percentage of damage corresponding to the depth of water, h the 

depth of water, H the maximum height of the building, maxD the maximum percentage of 

damage corresponding to the maximum height of the building, and r is the rate control. 

 

In typical residential buildings (urban buildings that are generally uniform from the 

second floor) with more than one storey, the first floor of the building contributes more 

damage than the other stories because most utilities and electrical equipment are stored 

there, as well as in the basement. Therefore, this formula enables the user to define the 

level of damage that would occur between the first-floor elevation and the top of the 

rafters of the first floor, and how much typical damage will be distributed among the 

other storeys. The generalised formula for damage estimation in each storey of a 
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building based on the maximum percentage of damage and the appropriate value for 

rate control r can be expressed as: 

i

r

i

i
hi D

H
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i
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where hid is the percentage of damage for the thi  floor corresponding to the depth of 

water above the thi  floor, ih  the depth of water above the thi  floor, iH  the height of the 

thi  floor, iDmax the maximum percentage of damage for the thi  floor, and ir is the rate 

control for the thi  floor. 

Overall, for this concept, the authors have tried to create a simple and flexible curve 

with regards to the variability in the number of storeys, height of storeys, and the 

distribution of components through the height of the building. Therefore, users can 

manipulate and calibrate this model easily based on the characteristics and types of 

buildings for other areas of study. 

3.5 Study Areas and Official Loss Data 

3.5.1 Study Areas and Flood Events 

For this study, two areas have been selected. The first study area is Bundaberg city in 

Queensland, Australia. Location of this city, as illustrated in Fig. 3-1, is part of the 

Bundaberg region located north of the state’s capital, Brisbane. The economy of the 

Bundaberg region is mainly dependent on the agricultural sectors, service sectors, and 

the tourism industry (Queensland Government, 2011a). In recent years, this city has 

experienced some extreme flood events because it is located in the vicinity of the 

Burnett River waterway. The Bundaberg ground elevation and the Burnett River 

catchment are illustrated in Figs. 3-2 and 3-3. The most recent flood responses from 

Bundaberg Regional Council date back to the floods in November 2010, January 2013, 

February 2013, and February 2015. 
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Figure 3-1: Map of Bundaberg Regional Council (Queensland Government, 2011a) 

 

Figure 3-2: Bundaberg ground elevation (Bundaberg Regional Council, 2013a) 
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Figure 3-3: Burnett River catchment map (Bundaberg Regional Council, 2013b) 

The empirical data used for calibrating FLFArs were collected after the January 2013 

Bundaberg flood event. This flood event that occurred from 21 to 29 January 2013 was 

a result of Tropical Cyclone Oswald, and the associated rainfall and flooding had a 

catastrophic effect on Queensland, with it being considered as the worst flood 

experienced in Bundaberg’s recorded history. The height of the floodwaters in 

Bundaberg city from Burnett River reached 9.53 metres at its peak, and over 2000 

properties were affected (Queensland Government, 2013). The propagation of the water 

depth is illustrated in Fig. 3-4. During this flood event in the Bundaberg region, 200 

businesses were inundated and over 2000 residents and 70 hospital patients were 

evacuated. Furthermore, the natural gas and power supplies were disrupted, agricultural 

and marine environments were impacted, and usage of coal and insurance claims 

dramatically increased (Queensland Government, 2013). In addition to this significant 

damage level, closures of the Bundaberg port, railways and roads had a considerable 

effect on the economy of this region. According to comments from the communications 

team of the Queensland Reconstruction Authority, Bundaberg Regional Council 

estimated that the public infrastructure damage from the natural disaster events of 2013 

was approximately AUD 103 million. 
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Figure 3-4: Inundation map of 2013 flood (Bundaberg Regional Council, 2013c) 
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Furthermore, for validating the applied damage models, empirical data collected from 

2012 flood event in the city of Roma, located in the Maranoa region in Queensland, 

have been utilised. This town, as illustrated in Figs. 3-5 and 3-6, is situated on Bungil 

Creek, a tributary of the Condamine River. The top five industry subdivisions of 

employment for workers in the Maranoa Regional Council are agriculture, public 

administration, education, oil and gas extraction, and retail stores (Queensland 

Government, 2011b). According to comments from the communications team of the 

Queensland Reconstruction Authority, in the last few years, the Maranoa Regional 

Council has had to respond to the following disaster events: 

• heavy rainfall and flooding in December 2014;  

• the central coast and southern Queensland trough in March 2014;  

• the central and southern Queensland low from 25 February to 5 March 2013;  

• Tropical Cyclone Oswald and associated rainfall and flooding in 21–29 January 

2013; 

• Roma flooding in early February 2012; 

• Roma flooding in April 2011; and 

• Roma flooding in March 2010 (with a 100-year return period). 

 

Figure 3-5: Map of Maranoa Regional Council (Queensland Government, 2011b) 

http://en.wikipedia.org/wiki/Bungil_Creek
http://en.wikipedia.org/wiki/Bungil_Creek
http://en.wikipedia.org/wiki/Condamine_River
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Figure 3-6: Basin-level flood modelling for Bungil Creek (Queensland Department of Natural 

Resources and Mines, 2015) 

The flood event in 2012 is considered to be the worst flood experienced in Roma’s 

history, having inundated 444 homes (twice as many as were flooded in 2010). The 

boundary of the flood is illustrated in Fig. 3-7. According to the Queensland 

Reconstruction Authority; the Maranoa Regional Council’s estimated that the public 

infrastructure damage from the natural disaster events of 2012 was approximately AUD 

50 million. After the 2012 flood, and having experienced three sequential years of 

flooding, insurance companies claimed that issuing new policies to Roma residents was 

only dependent on taking some new actions in regards to mitigating the risk of flood in 

this city.  
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Figure 3-7: Boundary of the 2012 historic flood event (Queensland Department of Natural 

Resources and Mines, 2015) 

 

3.5.2 Official Flood Loss Data 

Data collection on recent extreme events is a difficult procedure, even in some 

developed countries such as Australia. Damage surveys after a flood are not a common 

activity for governments, and they mostly rely on insurance company payouts or media 

reports for information (Bureau of Transport Economics, 2001; McBean et al., 1986; 

Merz et al., 2010; Smith, 1994). Insurance companies are mainly concerned with the 

collection of data on repair costs and their relation to the total insured value of the 

flooded object. However, data sets that were gathered with the aim of classifying 

structural damage or deriving loss estimation models also contain information about the 

flood characteristics, building types, construction materials, etc. (Thieken et al., 2009). 

In addition to these issues regarding the standards of data gathering, these companies do 
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not distribute their detailed databases due to confidentiality policies. Usually, their data 

are only available as a total value of consequences related to one specific event. On the 

other hand, data released by the media are not detailed as well as insurance records and 

cannot be considered as official and validated resources. 

Flood Loss Data of 2013 

An official data set on the level of hazard, characteristics of buildings, and the 

magnitude of losses provided by the Queensland Reconstruction Authority were used to 

calibrate FLFArs developed in this study. This data set provides 592 data samples from 

the Bundaberg flood in 2013. After discarding the unrelated cases (buildings with 

irrelevant functions or characteristics), 319 final samples for the four selected building 

types were collected. For these samples, the impacts of flood have been presented by the 

depth of water above the first floor of the buildings. Furthermore, the vulnerability of 

the buildings has been shown by wall type (e.g. timber or brick), building use, and 

number of storeys.  

In addition to hazard and vulnerability information, the level of structural damage has 

also been explained in the data set. This empirical data set, which has been collected by 

two post-disaster surveys, has categorised the condition of flooded buildings into 

undamaged, minor, moderate, severe, and total damaged rates. In addition, the 

guidelines of the survey describe these qualitative terms based on the affected assembly 

items. To be more precise, for each category of damage, it illustrates which groups of 

sub-assemblies (e.g. foundation, below first floor, structure, interiors and exterior walls) 

start to become damaged, or become partially or entirely damaged. Consequently, based 

on the sub-assembly approach proposed by the HAZUS technical manual (FEMA, 

2012) and for exchanging the description of damages into percentage of damages, the 

following steps have been accomplished:  

• For every type of building, the replacement value of each set of building sub-

assembly compared with the total value of the building has been estimated. In that 

connection, the Australian construction cost guide (Rawlinsons, 2014) and cost 

estimation bills generated by local construction companies (e.g. Organized Builders’ 



Chapter 3: Calibration and Validation of FLFArs      

 

-62- 

 

cost estimation: http://organizedbuilders.com.au/) were utilised. Table 3-1 

summarises the average contribution of sub-assembly replacement values as a 

percentage of the total building replacement value. 

• Based on the guideline descriptions of the damaged components and the relative 

value of affected items compared to the entire value of the building, damage 

description of each building has been exchanged to one percentage of damage.  

• For every building, based on the estimated percentage of damage and the reported 

depth of water, the percentage of damage vs. depth of water has been illustrated. 

Percentages of damage vs. depths of water for all samples have been depicted in Fig. 

3-8.  

Table 3-1: sub-Assembly replacement values for the common types of residential buildings as a 

percentage of the total building replacement value (an average estimation based on Rawlinsons 

construction cost guide (2014) and local construction companies) 

Assembly components Relative value 

Foundation 9% 

Below first floor 3% 

Structure framing 9% 

Roof covering and roof framing 7% 

Exterior walls 22% 

Interiors  50% 

Total 100% 
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Figure 3-8: Empirical data points collected from 2013 Bundaberg flood event and utilised for 

calibrating FLFArs (319 samples in 4 vulnerability classes) 

 

On the basis of sub-assembly values and guideline descriptions, Fig. 3-9 summarises 

the sub-assembly losses for one-storey buildings with timber walls. The vertical axis is 

the sub-assembly loss as a percentage of its own replacement value (extracted from the 

guideline descriptions), and the horizontal axis is the overall building loss as a 

percentage of the building replacement value (sum of the "sub-assembly losses 

multiplied by the average values"). 
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Figure 3-9: Illustration of condition rating and sub-assembly loss vs overall building loss for one-

storey buildings with timber walls on the basis of 2013 empirical loss data (based on building sub-

assembly approach suggested by Hazus-MH Flood Model Technical Manual, FEMA, 2012). The 

horizontal axis is the overall building loss as a percentage of the building replacement value, and 

the vertical axis is the sub-assembly loss as a percentage of its own replacement value 

Flood Loss Data of 2012 

To compare the performance of the applied damage models with the observed 

structural damages, an anonymised data set collected from the extreme event in the 

Maranoa region of Queensland, Australia (2012) has been utilised. This data set 

provides extent of damage, building type (e.g. wall type, number of storeys), and depth 

of water (i.e. flood level relative to first floor) for 150 inundated residential buildings 

(46 samples for one-storey buildings with timber walls; 14 samples for two-storey 

buildings with timber walls; 78 samples for one-storey buildings with brick walls; and 

12 samples for two-storey buildings with brick walls). For every building, the absolute 

damage value has been calculated by multiplying the loss ratio by the average 

replacement value of each building extracted from the national exposure information 

system of Australia (Dunford et al., 2014). Resampling of all building loss values by 

means of bootstrapping was then carried out to obtain a 95 % confidence interval of the 
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total observed losses. This was achieved with 10,000 simulated random samples which 

were drawn by replacement from the structural loss values. If the total losses estimated 

by the selected models fall within the 95 % interval of the resampled data, their 

performance will be assumed to be accepted; otherwise it can be rejected. By this 

approach, the performance of the applied damage models in terms of structural damage 

estimation in the area of study will be evaluated (Cammerer et al., 2013; Seifert et al., 

2010; Thieken et al., 2008). 

3.6 Derivation and Calibration of FLFArs with the Flood Loss Data of 2013 

Flood losses could be related to a variety factors such as lateral pressure, velocity, 

duration, debris, erosion, and the chemical effects of water. However, the water depth is 

identified as the most dominant influencing factor of flood damage to residential 

buildings in short-duration riverine floods (Cammerer et al., 2013; Kelman and Spence, 

2004; Merz et al., 2010; Thieken et al., 2005). Therefore, in the newly derived model, 

only the depth of water has been considered as the main characteristics of floods. 

For the newly derived model in this work (FLFArs), the extent of damage (dh) in each 

stage of water (h) is a function of two different parameters: maximum percentage of 

damage Dmax, which represents the total percentage of damage corresponding to the 

maximum depth of water (maximum height of the building relative to the first floor); 

and the rate control of function r. For calibrating the model, these two parameters, with 

reference to the empirical data should be fixed to the most appropriate values. However, 

due to the inherent uncertainty in the data sample, a range of estimates for the r factor 

and Dmax have been provided. With this objective, this section of study has illustrated a 

bootstrapping approach to the empirical data to assist in describing confidence limits 

around the parameters of the depth-damage function. The following steps have been 

performed in this regard: 

• Firstly, the empirical data set has been grouped into four different categories. This 

categorisation has been established according to considered vulnerability classes and 

building types.  
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• The range of maximum percentage of damage for each class of building has been 

selected (e.g. 60% to 80% for buildings with timber walls). This selection has been 

made based on the scatter of empirical data and the Geoscience Australia report 

(Geoscience Australia, 2012).  

• For every type of building, based upon the defined range of Dmax, different damage 

functions by different roots have been prepared.  

• Based on the visual comparison among damage functions and the empirical data set, 

210 different damage functions with the most appropriate values of r and Dmax have 

been selected for each type of building. For instance, for one-storey buildings with 

timber walls, these 210 functions have been created by varying the r value between 

1.1 and 2, and Dmax between 60% and 80%. 

• Subsequently, resampling of empirical loss values by means of bootstrapping was 

carried out; with the help of chi-square test of goodness of fit, the best-fitted values of 

r and Dmax were extracted. 

• Resampling of building loss values was continued up to 1000 times, and for each 

bootstrap the previous stage and goodness-of-fit test was performed. By this iteration, 

the average of fitted values of r and Dmax converged to the optimal values used for 

the most-likely function. Also, the range of Dmax and r parameters, which were used 

for generating the maximum and minimum functions, was extracted from the 

population of fitted values.    

The range of estimates we are portraying with the Dmax and r values express the lack 

of confidence in the damage-depth samples in representing the true uncertainty that 

exists in the population. Due to the fact that the relationship between flood impacts and 

losses to buildings is related to the characteristics of buildings (Cammerer et al., 2013; 

Thieken et al., 2005), these steps have to be repeated for all vulnerability classes and 

buildings types. Results of the model calibration are summarised in Tables 3-2 and 3-3. 

Furthermore, the final damage functions have been depicted in Figs. 3-10 and 3-11. 
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Table 3-2: Number of samples and range of r and Dmax values, calculated by the bootstrap and 

chi-square test for one-storey buildings 

One-storey buildings 

Wall type Number of samples Parameters 
Range of parameters 

Minimum Most-likely Maximum 

Timber 89 
r 1.3 1.55 2 

Dmax 64% 70% 74% 

Brick 143 
r 1.2 1.45 1.9 

Dmax 54% 60% 65% 

 

Table 3-3: Number of samples and range of r and Dmax values, calculated by the bootstrap and 

chi-square test for two-storey buildings  

Note: Subscripts of "r" and Dmax parameters represent the floor number.  

Two-storey buildings 

Wall type Number of samples Parameters 
Range of parameters 

Minimum Most-likely Maximum 

Timber 49 

r1 1.5 2.3 2.4 

r2 1.3 1.5 1.55 

Dmax1 38% 42% 43% 

Dmax2 25% 28% 28% 

Brick 38 

r1 1.4 2 2.3 

r2 1.2 1.4 1.5 

Dmax1 32.5% 34% 36% 

Dmax2 25.5% 26% 28% 
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Figure 3-10: Visualization of minimum, most-likely and maximum damage functions, calculated by 

bootstrap and chi-square test, for one-storey buildings with timber wall 

 

Figure 3-11: Visualization of minimum, most-likely and maximum damage functions, calculated by 

bootstrap and chi-square test, for two-storey buildings with brick wall 
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As can be seen from Table 3-3, for two-storey buildings, due to the different 

distribution and value of components in the height of the first floors in contrast to the 

second floors, different values should also be considered for the r and Dmax factor of 

each storey. Referring to the higher rate of damage in the first floor of buildings 

compared to the second floor, the value of r in the first storey of buildings is expected to 

be more as well. This assumption is also reflected by statistical analysis. Although it 

would be more economical to replace a building that has more than 60 % damage rather 

than repair it (Nadal et al., 2010; Scawthorn et al., 2006), these damage curves have 

been extended up to the maximum value of damages for a better comparison with other 

models in the next part of this study. 

3.7 Models Comparison 

3.7.1 Applied Damage Models 

As mentioned earlier, since relative damage curves are more flexible in terms of 

transferability to a new area (Cammerer et al., 2013; Merz et al., 2010), besides FLFArs, 

two more relative damage models have been selected for comparison in this study. 

Geoscience Australia (GA) Depth-Damage Function 

Some generic depth-damage curves for south-east Queensland have been presented in 

the report by Geoscience Australia (Geoscience Australia, 2012). These synthetic curves 

are prepared for estimating the magnitude of damage for building fabrics (including 

interiors) and building contents (including belongings that may be removed from the 

house) separately. Moreover, this report represents different curves for different 

vulnerability classes and building types based on the size of buildings, construction 

materials, the presence of garages, and the number of storeys (Geoscience Australia, 

2012). It is worth noting that the performance of these synthetic damage curves has not 

been calibrated with any related empirical data sets. However, these damage curves are 

good examples for comparison for the following reasons: they express the magnitude of 
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damages relatively; they are prepared by Geoscience Australia for use in our area of 

study; and they are prepared by the synthetic logic approach. 

By taking the depth of water as the hydraulic input, this model gives the percentage 

of damage for every type of building separately. From this report, and with the aim of 

result comparison, four damage curves that are more related to the building types of this 

study have been selected. 

FEMA/USACE Depth-Damage Function 

The United States Federal Emergency Management Agency (FEMA) and Army 

Corps of Engineers (USACE) provide stage-damage curves for flood damage estimation 

of residential buildings. The functions are “relative” and damages are expressed as a 

percentage of total building value (USACE, 2003). Models are provided for one-storey 

or multi-storey buildings, with and without basements. Also, they represent the 

percentage of damage for the building’s structure and contents separately (Comiskey, 

2005). It is worth mentioning that similar to the GA approach, the structural curves 

cover all building fabrics, including interiors. Due to the frequent usage of the USACE 

model in Australia, this relative damage function has been selected for comparison in 

this study.  

Similar to the other models, the only hydraulic input of these curves would be the 

depth of water. Also, the vulnerability classes considered in this method are related to 

the number of storeys and presence of a basement. From the provided curves by 

USACE, damage curves related to one-storey and two-storey buildings without a 

basement are the most appropriate and relevant curves for this study. 

Visual comparisons of the depth-damage functions provided by the three 

methodologies are shown in Figs. 3-12 and 3-13. 
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Figure 3-12: Model comparison for one-storey buildings (the FLFArs has been derived by the most-

likely functional parameters) 

 

Figure 3-13: Model comparisons for two-storey buildings (the FLFArs has been derived by the 

most-likely functional parameters) 
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3.7.2 Results Comparison and Model Validation for the Maranoa Study 

Area  

Results of applied damage models have been compared with the observed loss data 

collected from 2012 Maranoa flood event. As stated before, in addition to FLFArs that 

has been calibrated with the damage data from the Bundaberg region, two more models 

(one local and one from the USA) have been derived. 

The overall reported loss for the 150 cases (building fabric) affected by the Maranoa 

flood amounted to AUD 13.17 million (mean of the 10,000 bootstrap samples), and the 

95 % confidence interval ranges from AUD 13.03 million to AUD 13.32 million. As 

mentioned previously, if the estimated total losses by the selected models fall within the 

95 % interval of the resampled data, their performance will be assumed to be accepted 

and sufficiently accurate; otherwise it is rejected (Cammerer et al., 2013; Seifert et al., 

2010; Thieken et al., 2008). It is worth mentioning that for estimating the absolute value 

of damages for each building, the loss ratios extracted from the damage models have 

been multiplied by the same replacement values used in section 4.2.2.  

The performance of all flood loss models used to estimate the total building damage 

of the 2012 event is summarised in Table 3-4. It can be observed that the result of 

FLFArs with the most-likely functional parameters lie within the confidence interval, 

and its performance may be acceptable. However, results of the GA and USACE 

models do not lies within the confidence interval of the reported loss and their 

performance is rejected in this area of study. This issue and the validation procedure 

illustrates the importance of model calibration with the empirical local data sets, 

particularly when the water depth is the only hydraulic factor considered (Cammerer et 

al., 2013; Chang et al., 2008; McBean et al., 1986). 
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Table 3-4: Comparison of different loss estimates with the observed flood damage (95% confidence 

interval) on residential building structures for the flood event of February 2012. Note: for model 

validation, FLFArs has been derived by the most-likely functional parameters. 

Damage Function Estimated Losses (in AUD million)  

FLFArs 13.09 

GA Model 25.42 

USACE Model 20.21 

Reported Loss in 2012 AUD 13.03 million 

 (2.5th percentile)  

AUD 13.32 million 

 (97.5th percentile) 

  

Furthermore, errors in the estimates from the aforementioned models have been 

evaluated by the mean bias errors (MBE); the mean absolute error (MAE); and the root 

mean square error (RMSE) statistical tests. The MBE provides the average deviation of 

the estimated ratios from the observed ratios, and describes the direction of the error 

bias. A negative MBE indicates an underestimation in the estimated ratios, while a 

positive value shows an overestimation. The MAE represents the average absolute 

deviation of the estimated ratios from the observed values and is a quantity used to 

measure how close the estimates are to the empirical data. The RMSE also expressed 

the variation of the estimated ratios from the observed ratios and it signifies the standard 

deviation of the differences between the estimated ratios and observed values (Chai and 

Draxler, 2014; Seifert et al., 2010). By these statistical comparisons, the performance of 

the derived models equated with the empirical data set has been assessed, and the results 

are summarised and compared in Table 3-5. 
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Table 3-5: Numerical comparison and error statistics of depth-damage function performance for 

the flood event of February 2012 (MBE: mean bias error; MAE: mean absolute error; RMSE: root 

mean squared error) 

 FLFArs GA method USACE method 

MBE -0.001 0.167 0.096 

MAE 0.03 0.17 0.10 

RMSE 0.04 0.19 0.11 

 

This table clearly shows that FLFArs has a better performance compared to other 

models. The MBE value shows a slight bias, very close to zero, for the newly derived 

model (FLFArs), while this value for the other methodologies indicates a larger average 

deviation from the observed losses. On the other hand, the MAE and the RMSE for 

FLFArs estimates are 3 and 4 %, respectively. However, other models have larger 

average values of absolute deviation and greater values of standard deviation. This 

matter signifies a higher variation in the errors of the GA and USACE models estimates. 

As summarised in Fig. 3-14, the individual differences between the estimated ratios and 

observed values (residuals) in FLFArs, in contrast to other methodologies, have less 

magnitude and variation. The FLFArs clearly achieves better results than the models 

which are not calibrated with the local damage data.  
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Figure 3-14: Residual plot used for comparing the performance of selected damage functions 

relative to empirical loss ratios 

3.8 Conclusions 

Damage mitigation and consequence reduction in terms of lessening the probability 

of expected losses is the main focus of risk management. While much effort has gone 

into emergency management in Australia, flood damage assessment is still crude and 

affected by large uncertainties. Stage damage curves are the most common and 

internationally accepted methods for flood damage estimation. Despite the simplicity of 

using these curves for different water depths, non-calibrated curves could considerably 

raise the level of uncertainty in flood damage assessment. Due to a lack of empirical 

data from recent extreme events, few studies have been conducted to explore the 

validation of well-known overseas methodologies in Australia. Also, most of the 

synthetic methodologies prepared for Australia are not calibrated with empirical loss 

data or express the magnitude of damage in absolute monetary values. These types of 

curves are not flexible for transferring in spatial scale or time, and their results are not 

reliable unless they have been calibrated with the conditions of the new region of study. 

The focus of this study is on direct, tangible damages of four common types of 

residential buildings. This study aimed to present a new flood loss function for 

Australian residential structures (FLFArs). The new function is a general methodology 
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for describing the magnitude of damage for each stage of water, and suggests some 

simple and flexible curves with regards to the variability in characteristics of buildings. 

The FLFArs has been calibrated according to the geographical conditions in the area of 

study (i.e. building characteristics and flood specifications) using empirical data sets 

collected from the 2013 flood event in the Bundaberg region of Queensland, Australia. 

Finally, a statistical comparison for estimating the level of reliability and contrasting the 

performance of the methodology with damage data collected from the 2012 Maranoa 

flood event was conducted. With this objective and in addition to FLFArs, a well-known 

overseas methodology and a local state approach were used for the area of study. 

The analysis reveals that the results of the flood damage models are strongly 

dependent on the selected stage-damage curves and flood damage estimation without 

model calibration might result in inaccurate values of losses. Therefore, it is very 

important to be aware of associated uncertainties in flood risk assessment if the loss 

functions have not been calibrated with the conditions of the region of study. The results 

of this study show that even the state methodologies might considerably overestimate 

the magnitude of flood impacts, or significantly underestimate the value of losses if they 

have not been calibrated with the empirical loss data. 
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4 DEVELOPMENT AND 

EVALUATION OF FLFACS 

A NEW FLOOD LOSS FUNCTION FOR AUSTRALIAN 

COMMERCIAL STRUCTURES [Published Chapter]2 
 

 

 

4.1 Abstract 

Commercial building flood losses significantly affect the Australian economy; however, 

there are not many models for commercial flood damage estimation and their results are 

not reliable. This study has attempted to derive and develop a new model (FLFAcs) for 

estimating the magnitude of direct damage on commercial structures. The FLFAcs - 

Flood Loss Function for Australian commercial structures, was calibrated using 

empirical data collected from the 2013 flood in Bundaberg, Australia, and considering 

the inherent uncertainty in the data sample. In addition, the newly derived model has 

been validated using a K-fold cross-validation procedure. The model performance has 

also been compared with the Flood Loss Estimation MOdel for the commercial sector 

(FLEMOcs) and the Federal Emergency Management Agency (FEMA) damage 

functions from overseas, as well as the ANUFLOOD damage model from Australia. 

The validation procedure shows very good results for FLFAcs performance (no bias and 

                                                 

2 Hasanzadeh Nafari, R., Ngo, T., Lehman, W., 2016. Development and evaluation of FLFAcs – A new 

Flood Loss Function for Australian commercial structures. Int. J. Disaster Risk Reduction, 17, 13-23 
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only five per cent mean absolute error). It also shows that ANUFLOOD, as Australia’s 

most prevalently used commercial loss estimation model, is still subject to very high 

uncertainty. Hence, there is an immediate need for a project to build new depth-damage 

functions for commercial and industrial properties. Awareness of these issues is 

important for strategic decision-making in flood risk reduction and it could amplify the 

cognition of decision-makers and insurance companies about flood risk assessment in 

Australia. 

4.2 Introduction 

Statistical analyses shows the considerable impacts of flood risk compared to other 

types of natural hazards (André et al., 2013; Kourgialas and Karatzas, 2012; Llasat et 

al., 2014; UNISDR, 2009). In Australia, floods are the most costly of all disaster types, 

contributing 29 % of the total cost for the nation’s economy and the built environment 

(Bureau of Transport Economics, 2001; Khalili et al., 2015). Unfortunately, 

unsustainable developments and global warming are increasing the risk of flood (Elmer 

et al., 2012; Kundzewicz et al., 2005; McGrath et al., 2015). Consequently, flood risk 

assessment and flood risk mitigation are gaining more attention (André et al., 2013; 

Kreibich et al., 2010; Othman et al., 2014).  

Flood risk can be defined as the probability and magnitude of expected losses (André 

et al., 2013; Elmer et al., 2010; Kaplan and Garrick, 1981; Kreibich et al., 2010; Mouri 

et al., 2013; Neale and Weir, 2015; UNISDR, 2004). Therefore, loss estimation and 

consequence assessment is an indispensable part of flood risk assessment, and the 

results will provide decision-makers with an essential tool for planning better risk 

reduction strategies (Emanuelsson et al., 2014; Gissing and Blong, 2004; McGrath et 

al., 2015; Merz et al., 2010).  

In general, flood losses can be categorised into direct or indirect (Meyer et al., 2013; 

Molinari et al., 2014a; Thieken et al., 2005); and marketable (tangible) or non-

marketable (intangible) values (André et al., 2013; Kreibich et al., 2010; Molinari et al., 

2014a). Direct damages take place due to physical contact between the floodwater and 



Chapter 4: Development and Evaluation of FLFAcs      

 

-85- 

 

inundated structures (Hasanzadeh Nafari et al., 2016; McGrath et al., 2015; Morrison 

and Mollino, 2012). This study is limited to direct, tangible damages of commercial 

structures due to a short duration of riverine (low velocity) inundation.  

In Australia, direct tangible damages of commercial buildings could be estimated by 

the Rapid Appraisal Method (RAM) or by function approaches (e.g. ANUFLOOD). 

Function approaches are the most common and internationally accepted methodology 

(Hasanzadeh Nafari et al., 2016). They make a causal relationship between the 

magnitude of the hazard and resistance of flooded objects, and can estimate the extent 

of losses for each stage of water (Dewals et al., 2008; Grahn and Nyberg, 2014; 

Jongman et al., 2012; Kreibich and Thieken, 2008; Molinari et al., 2014b; Smith, 1994; 

Thieken et al., 2006). Function approaches can be categorised into absolute and relative 

types. Absolute functions express the magnitude of damages in monetary values; while 

relative types estimate the dimension of losses as a ratio of the total value, i.e. 

replacement value or depreciated value (Kreibich et al., 2010). Relative loss functions in 

contrast to absolute loss functions have better transferability in space and time since 

they are independent of changes in market values (Merz et al., 2010). However, both 

types are restricted to the area of origin in terms of geographical conditions, i.e. building 

characteristics and flood specifications (Cammerer et al., 2013; McGrath et al., 2015; 

Proverbs and Soetanto, 2004). Therefore, the results of transferred models contain a 

high level of uncertainty if they have not been calibrated with the empirical data sets 

collected from the new region of study (Cammerer et al., 2013; Molinari et al., 2014b). 

Commercial sector flood losses significantly contribute to the economy and to 

societal welfare. Hence, any disruptions in their activities due to direct damages might 

cause indirect and induced long-term losses (Haque and Jahan, 2015; Haraguchi and 

Lall, 2014). Also, inaccurate loss estimation for commercial buildings leads to wasted 

effort, money and resources for insurance companies and organisations involved in risk 

mitigation (McBean et al., 1986; McGrath et al., 2015). In spite of these facts, available 

approaches have concentrated on residential building losses, and they are still subjected 
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to a considerable level of uncertainty for commercial building flood loss estimation 

(Gissing and Blong, 2004; Kreibich et al., 2010). 

This study has derived a new Flood Loss Function for Australian commercial 

structures (FLFAcs). The newly derived model is a general methodology for swiftly 

describing the extent of losses for each level of flood, and suggests a simple and flexible 

curve with regards to the variability in characteristics of structures. The FLFAcs has 

been calibrated for Australian geographical conditions by using an empirical data set 

collected from the 2013 flood in Bundaberg, Queensland, Australia. Uncertainties 

pertaining to the newly derived function have been considered as well. In addition, 

performance of this function has been compared with an Australian methodology as 

well as two well-known overseas methodologies. Accordingly, the accuracy and 

validation of each model compared to the empirical data set has been evaluated and 

examined.  

On the whole, the results of flood damage models provide the input data for 

subsequent damage reduction, vulnerability mitigation and Disaster Risk Reduction 

(DRR). Therefore, it is very important to be aware of associated uncertainties.  

4.3 Background 

In Australia, RAM and ANUFLOOD are the most common models for the estimation 

of direct losses of commercial structures. The RAM, developed by Sturgess and 

Associates (2000), considers some mean values of damage for all flooded buildings, 

including those inundated above and below floor level, and estimates the magnitude of 

potential losses. Potential losses are the maximum possible value of losses without 

considering any mitigation measures (Bureau of Transport Economics, 2001; 

Hasanzadeh Nafari et al., 2016; Molinari, 2011; Molinari et al., 2013). This 

methodology allocates a damage value of AUD20,500 to inundated businesses less than 

1000 m2 in size, and some individual damage values (in dollars per square metre) for 

businesses larger than 1000 m2 in size (Gissing and Blong, 2004; Sturgess and 

Associates, 2000). The value of estimated damages includes losses to building 
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structures and contents (Kreibich et al., 2010) and could be converted to actual values 

by using some ratios, suggested based on the previous flood experiences and early 

warning time (Gissing and Blong, 2004; Molinari, 2011; Sturgess and Associates, 

2000).    

Although this methodology for initial rapid assessment is useful and inexpensive, the 

results are considerably inaccurate and uncertain (Barton et al., 2003; Gissing and 

Blong, 2004). In addition, this averaging method has not precisely considered the 

variability of commercial buildings with regard to building characteristics, building 

materials, and building exposure values (Handmer et al., 2002). Also, propagation of 

water depth and different magnitudes of flood impacts have been neglected in this 

approach. Consequently, this model only calculates an accumulated value of the total 

damages occurred, without considering its distribution over the inundated area. It is also 

noted that due to economic inflation, the potential damage values of the RAM 

methodology need regular recalibration. Under other circumstances, this method might 

underestimate the value of losses considerably (Merz et al., 2010). Furthermore, 

because RAM does not separate the magnitude of structural damage from contents 

losses, the conversion of potential damage to actual damage, due to the different nature 

of movable inventories from non-movable components with lead-time, is problematic 

(Gissing and Blong, 2004).   

In addition to the averaging method, stage-damage curves can be used for the 

estimation of flood losses in commercial sectors. These models estimate the magnitude 

of losses for different stages of flooding, and the magnitude of damage increases by 

over-floor water depth increments (Gissing and Blong, 2004). Stage damage curves 

have been grouped into two different main classifications: empirical and synthetic 

curves (McBean et al., 1986). Empirical curves build on surveyed damage data. The 

estimated results are more accurate due to taking into account the effect of mitigation 

measures and the variability within one category of building (Kreibich et al., 2005; 

Merz et al., 2010, 2004). However, Smith (1994) discussed that by moving in time and 

space, mitigation measures, level of preparedness, characteristics of floods, and the 
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attributes of buildings, could alter significantly. Therefore, gathering data from one 

flood event and using it as a guide for future events prediction, even in the area of 

origin, requires a complicated process of extrapolation (Gissing and Blong, 2004; 

McBean et al., 1986; Smith, 1994). As a solution, synthetic curves based on a valuation 

survey have been created for different types of buildings. Valuation surveys direct 

attention to the value and level of all components that are situated above the basement 

(Barton et al., 2003). The extent of potential losses for different stages of flood via 

“what-if” questions is estimated based on the distribution of components in the height of 

the building and the degree of fragility of each item (Gissing and Blong, 2004; Merz et 

al., 2010). In addition to the advantages related to a high degree of standardisation and 

independency from historic data, a valuation survey, even for one type of building, 

needs a high level of effort. Also, due to estimating the extent of potential losses, this 

approach does not take into account the effects of mitigation measures (Hasanzadeh 

Nafari et al., 2016; Merz et al., 2010; Smith, 1994). 

ANUFLOOD commercial damage curves (Smith, 1994) are empirical damage 

functions that are used commonly in Australia. This methodology expresses the 

magnitude of losses as a total value including damage to the structure and inventories. 

Furthermore, this model has presented different depth-damage functions based on the 

size of the business (i.e. smaller than 186 m2, between 186 m2 and 650 m2, and larger 

than 650 m2) and value of buildings (i.e. depends on the vulnerability of contents). The 

same as RAM, damage for small- and medium-sized classes have been given in 

absolute values; while for large-sized classes, it has been presented in dollars per square 

metre (Gissing and Blong, 2004).  

Similar to most Australian approaches, this approach expresses the magnitude of 

damage in absolute fiscal values. As stated earlier, these types of functions, in contrast 

to relative loss functions, are more rigid for transferring in space or time (Merz et al., 

2010). For instance, the RAM report demands that the magnitude of damage estimated 

by the ANUFLOOD method should be increased by 60 % and its performance is no 

longer sufficiently accurate (Sargent, 2013; Sturgess and Associates, 2000). The reason 
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for this is related to the fact that these curves are based primarily on a 1986 flood event 

in Sydney and they need updating due to changes in the value of the dollar compared to 

today’s value. Hence, their results are not reliable unless they have been recalibrated 

frequently (Merz et al., 2010).   

To address these issues, the authors have attempted to develop a new empirical-

synthetic model with a better level of accuracy in results and transferability in time and 

space compared to the available Australian methodologies. Also, this new model is easy 

enough to understand and generalise for other types of structures and vulnerability 

classes. Despite the fact that the itemised estimation survey proposed for synthetic 

damage functions seems a little confusing and takes a long time (Merz et al., 2010), the 

new model for evaluating the assembly components and tracking the vertical 

parameters, by considering more general categories, has tried to simplify the process as 

much as possible. 

4.4 The newly derived function (FLFAcs) 

For developing an analytical stage damage curve in one area of study, a 

representative building category is first needed. Next, for the representative 

classification, an average distribution of the building components in the height of the 

structure should be taken out. Eventually, the percentage of damage for every stage of 

water could be estimated based on the average value of fragile items relative to the total 

value of the structure (Bureau of Transport Economics, 2001). In this study and for 

developing the newly derived model, these steps have been put well to use. 

Firstly, selection of the representative group and the vulnerability class has been 

made based on the characteristics of existing structures (e.g. material, size and age) 

collected from the national exposure information system of Australia (Dunford et al., 

2014). This data set shows that 70 % of commercial buildings in our areas of study are 

one-storey buildings with masonry walls and slab-on-ground. Also, these buildings are 

used for retail trades, repair or personal services, or professional offices; and their size, 
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on average, is 400 m2. In addition, 75 % of these buildings have been constructed before 

1980.   

Next, for resolving the stated issues related to the significant efforts required for data 

gathering and details surveying, some more generic sub-assembly groups have been 

defined. To be more specific, components of commercial structures based on the sub-

assembly approach proposed by the HAZUS technical manual (FEMA, 2012) have been 

grouped into five main categories, as 

• Foundation and below first floor 

• Structure framing 

• Roof covering and roof framing 

• Exterior walls: includes wall coverings, windows, exterior doors and insulation 

• Interiors: includes interior walls and floor framing, drywall, paint, interior trims, floor 

coverings, cabinets, and mechanical and electrical facilities. 

The percentage of damage for every stage of water is a function of fragility and value 

of flooded categories. Therefore, for pursuing the real behaviour of each category 

against the impacts of water, and resolving the issue related to ignoring the effect of 

mitigation measures in synthetic methods (Merz et al., 2010), the shape of the newly 

derived function has been adjusted and calibrated using a historic data set collected 

from a recent extreme event. Hence, this approach could be named as an empirical-

synthetic model. 

The FLFAcs has been built on a general methodology which attempts to generate a 

simple and flexible curve to depict the extent of flood losses for every stage of water 

quickly. The proposed formula can create a flexible curve with regards to variability in 

the number of storeys, height of storeys, and the distribution of assembly items through 

the height of the building. Therefore, users can manipulate and calibrate this model 

easily based on the characteristics, uses and types of structures. 

This methodology has been developed by considering the variability of structural 

components, namely flood vulnerability and exposed value. More specifically, the 
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vulnerabilities of structural components are different from each other, and each 

assembly category starts damaging after a specific level of total damage and subsequent 

to different water depths. Also, the exposed value of each category relative to the total 

value of the structure is different, and the most valuable items (e.g. the interiors and the 

exterior walls) start damaging from the first few centimetres of water depth (FEMA, 

2012). This means that the rate of damage in the first stages of flooding is greater than 

the remaining stages. Therefore, the slopes of the damage curves might vary based on 

an exponential equation (Cammerer et al., 2013; Elmer et al., 2010; Hasanzadeh Nafari 

et al., 2016; Kreibich and Thieken, 2008).  

The power (r) of Equation (1) controls the rate of alteration in the percentage of 

damage relative to the growth of water depth. In general, a higher value for "r" means a 

faster rate of damage at the first few metres of building height (Hasanzadeh Nafari et 

al., 2016). The general formula has been proposed as shown below:  
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where 
ih  = the depth of water above the 

thi  floor, 
hid = the percentage of damage 

corresponding to the depth of water above the 
thi  floor, 

iH  = the maximum height of 

thi  floor, 
iDmax
= the maximum percentage of damage for the 

thi  floor corresponding to 

the maximum height of 
thi  floor, and 

ir = the rate control for the 
thi  floor (i.e. for the 

representative group of buildings in this study i  =1). 

4.5 Study areas and official data 

4.5.1 Study areas and flood events 

The selected area of study is the commercial zone of Bundaberg Council in 

Queensland, Australia. Bundaberg central city, as illustrated in Figure 4-1, is part of the 

Bundaberg region, north of the state’s capital, Brisbane. Overall, 549 commercial 

buildings are situated in this suburb, including wholesale and retail trades; offices; and 
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transport activities (Dunford et al., 2014). As stated earlier, 75 % of these buildings 

have been constructed before 1980 (Dunford et al., 2014). As such, the majority of these 

buildings are old structures and vulnerable against flood impacts. Also, 70 % of the 

buildings have been constructed with masonry walls (Dunford et al., 2014), which are 

more vulnerable, compared to concrete and metal walls (Hawkesbury-Nepean 

Floodplain Management Steering Committee, 2006). From 2010, this city has 

experienced some extreme flood events due to the fact that it is situated in the vicinity 

of the Burnett River waterway. The Burnett River catchment and the Bundaberg ground 

elevation are illustrated in Figures 4-2 and 4-3. Empirical data used for this study has 

been collected after the January 2013 flood. 

This flood event was a result of Tropical Cyclone Oswald and the associated rainfall. 

Flooding had a catastrophic effect on the Bundaberg economy, with this event being 

considered as the worst flood experienced in Bundaberg’s recorded history. The 

observed peak water level along the Burnett River reached 9.53 m (Queensland 

Government, 2013). The propagation of the water depth is illustrated in Figure 4-4. 

Lifelines and infrastructure were disrupted, agricultural sectors and marine 

environments were impacted, and usage of coal and insurance claims dramatically 

increased (Queensland Government, 2013). According to comments from the 

communications team of the Queensland Reconstruction Authority, Bundaberg 

Regional Council estimated that the public infrastructure damage from the natural 

disaster events of 2013 was approximately AUD103 million (Hasanzadeh Nafari et al., 

2016). 
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Figure 4-1: Map of Bundaberg City (Queensland Government, 2011) 

 

Figure 4-2: Bundaberg ground elevation (Bundaberg Regional Council, 2013a) 
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Figure 4-3: Burnett River catchment map (Bundaberg Regional Council, 2013b) 
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Figure 4-4: Inundation map of 2013 flood (Bundaberg Regional Council, 2013c) 
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4.5.2 Official flood data set 

Damage surveys after floods are not a common activity for Australian governments, 

and most states have not dedicated any organisations to perform post-disaster data 

collection and surveys. Therefore, similar to many other countries, there is a high 

reliance on insurance company reports (Bureau of Transport Economics, 2001; Merz et 

al., 2010; Smith, 1994). Insurance company data sets are not generally accessible to the 

public, and due to confidentiality policies, companies do not release detailed records for 

communal use (Grahn and Nyberg, 2014). On the other hand, company methods of data 

gathering and collection are extremely dependent on their internal standards and 

policies. Therefore, the data sets may not be appropriate for deriving loss estimation 

models (Hasanzadeh Nafari et al., 2016; Thieken et al., 2009).  

Between November 2010 and April 2011, Queensland was struck by a series of 

natural disasters such as extensive flooding (e.g. Maranoa and Bundaberg floods) and 

destructive storms. In response to the disaster events, the Queensland Government 

established the Queensland Reconstruction Authority. This government organisation has 

provided the confidential data set used for this study and employed for model 

calibration. As mentioned before, this data set is related to the Bundaberg central region 

flood in 2013 and represents the magnitude of hazard (i.e. over-floor water depth) and 

the extent of damages for 155 masonry wall commercial buildings.     

The extent of structural damages has been collected by two post-disaster surveys and 

expresses the condition of flooded buildings by some descriptive terms such as: 

undamaged, minor, moderate, severe, and total damaged. An attached guideline 

explains these terms based on the affected structural components. Specifically, for each 

condition, the survey indicates which groups of sub-assemblies (e.g. foundation, below 

first floor, structure, interiors or exterior walls) start to become damaged, or become 

partially or entirely damaged. 

Consequently, based on the average value of damaged items relative to the total value 

of the structure and the sub-assembly approach proposed by the HAZUS technical 

manual (FEMA, 2012), the description of damages have been exchanged into 
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percentage of damages. In this regard, the replacement value of each set of building sub-

assembly compared with the total value of the building has been estimated with the help 

of the Australian construction cost guide (Rawlinsons, 2014) and cost estimation bills 

generated by local construction companies (e.g. Organized Builders’ cost estimation: 

http://organizedbuilders.com.au). Table 4-1 summarises the average contribution of sub-

assembly replacement values as a percentage of the total building replacement value. 

Eventually, for every building, based on the estimated percentage of damage and the 

recorded depth of water, the percentage of damage vs. depth of water was extracted. 

Table 4-1: Sub-assembly replacement values for the common types of commercial buildings (one-

storey retail trade buildings and office buildings with masonry walls and slab-on-ground) as a 

percentage of the total building replacement value (Rawlinsons, 2014) 

Assembly Components Relative Value 

Foundation and below first floor 12% 

Structure framing 8% 

Roof covering and roof framing 7% 

Exterior walls 13% 

Interiors  60% 

Total 100% 

 

4.6 Derivation and calibration of the new model 

For the newly derived model in this work, the extent of damage (dh) in each level of 

water (h) is a function of two parameters: maximum percentage of damage Dmax, and 

the rate control of function r. These two parameters, with reference to the empirical 

data, should be stabilised to the most appropriate values. However, because of the 

inherent uncertainty in the data sample and great inhomogeneity of the commercial 

sector (Gissing and Blong, 2004; Seifert et al., 2010), a range of estimates for the r 
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factor and Dmax have been provided. With this objective, this section of the study has 

illustrated a bootstrapping approach to the empirical data to assist in describing 

confidence limits around the parameters of the depth-damage function. The following 

steps have been accomplished in this regard: 

• The range of maximum percentage of damage (Dmax) has been selected. This choice 

has been established upon the scatter of empirical data; structural characteristics (e.g. 

age and material); the Australian building guidelines for flood-prone areas 

(Hawkesbury-Nepean Floodplain Management Steering Committee, 2006); and some 

comparable relative flood loss models. 

• Based on the defined range of Dmax, different damage functions by different r values 

have been generated. Afterwards, by visual comparison among damage functions and 

the empirical data set, 210 different damage functions with the most appropriate 

values of r and Dmax have been picked out. These curves have been created by 

changing the r value between 1.1 and 2, and Dmax between 40% and 60%. 

• Subsequently, resampling of empirical loss values by means of bootstrapping was 

carried out, and with the help of chi-square test of goodness of fit, the best-fitted 

value of r and Dmax were extracted. 

• Resampling of building loss values was continued up to 1000 times and for each 

bootstrap, the previous stage and goodness of fit test was fulfilled. By this iteration, 

the average of fitted values of r and Dmax converged to the final values used for the 

most-likely damage curve. Furthermore, the range of Dmax and r parameters, which 

were utilised for creating the minimum and maximum damage curves, were taken out 

from the population of fitted values.    

The range of estimates we are depicting with the Dmax and r values express the lack of 

confidence in the damage depth samples in representing the true uncertainty that exists 

in the population. Variability of these two parameters might be related to variation in 

characteristics of companies, change in characteristics of flood, and alteration of 

mitigation measures undertaken (Kreibich et al., 2010; McGrath et al., 2015). Results of 
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the model calibration are summarised in Table 4-2. Also, the final damage functions 

have been depicted in Figure 4-5. 

The authors have tried to select a trend with a slight difference relative to the 

empirical data set. In that connection and as stated before, the most accurate values of 

parameters have been selected by the chi-square test of goodness of fit. As discussed 

further below, this matter has minimised the errors of the new model estimates relative 

to the observed loss records.  

Table 4-2: Number of samples and range of r and Dmax values, calculated by the bootstrap and 

chi-square test goodness of fit 

Commercial Structures with masonry walls and slab-on-ground 

Number of 

Samples 
Parameters 

Range of parameters 

Minimum Most-likely Maximum 

155 

r 1.1 1.85 2 

Dmax 48% 50% 60% 
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Figure 4-5: Visualisation of minimum, most-likely and maximum damage functions, calculated by 

bootstrap and chi-square test goodness of fit 

4.7 Models comparison 

4.7.1 Applied damage models 

Besides FLFAcs, three more damage models (one local and two from overseas) have 

been selected for comparison in this study. 

ANUFLOOD 

One of the models which have been selected for this study is the ANAFLOOD 

commercial stage-damage curves. As discussed previously, ANUFLOOD curves are 

presented as absolute losses and should be indexed to the most current dollar value. In 

this context, the performance of ANUFLOOD curves represented by the BMT WBM 

report (Huxley, 2011) have been examined and evaluated. The ANUFLOOD 

methodology is considered as Australia’s most commonly used commercial loss 

estimation model (Gissing and Blong, 2004). Therefore, awareness about the level of 
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uncertainty compared to the real-world damage data will amplify the cognition of 

decision-makers for flood risk reduction strategies in Australia. 

As stated earlier, this methodology (as opposed to other applied models) expresses 

the magnitude of losses as a total absolute value, which includes damage to the structure 

and contents. Hence, for deriving the ANUFLOOD methodology, the following steps 

have been taken. (1) Total value of damage has been estimated by taking water depth as 

the hydraulic input, and size of business as the vulnerability class. It is worth noting that 

the majority of the buildings in the area of study are situated in the medium class of the 

ANUFLOOD building value. (2) In order to facilitate comparison of the ANUFLOOD 

methodology with other models, the values of structural damage and content damage 

should be separated from each other. For this matter, on the basis of building use and 

based on the level of water, the ratios of content losses relative to overall building losses 

proposed by FEMA have been utilised (FEMA, 2011). (3) For deriving structural loss 

ratios, the values of structural losses have been divided by the average value of assets, 

extracted from the national exposure information system of Australia (Dunford et al., 

2014).  

FLEMOcs depth-damage function 

Kreibich et al. (2010) proposed a new model for the estimation of flood losses in 

commercial sectors. This country-wide model has been prepared based on data collected 

for 642 flooded companies in Germany, and it is applicable for use in different spatial 

scales (Kreibich et al., 2010). This model has considered the hydraulic impacts of flood 

at five intervals (< 21 cm, 21–60 cm, 61–100 cm, 101–150 cm, and > 150 cm) of water 

depth. The characteristics of companies have been considered by three vulnerability 

classes related to the size of the company considering the number of employees (1–10, 

11–100, > 100 employees); and the use of sectors (public and private sectors; 

production industry; corporate services and trade). Furthermore, this methodology has 

proposed some scaling factors to account for the effects of water contamination and 

level of precaution in the loss ratios (Kreibich et al., 2010). This multi-factorial relative 

method, which considers more damage-influencing factors, has decreased the level of 
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uncertainty in flood damage estimation. Hence, it would be a good example for adapting 

and deriving for this study area. 

According to the defined vulnerability classes by FLEMOcs; referring to the national 

exposure information system of Australia (Dunford et al., 2014); pertaining to the 

provided data set by the Queensland Reconstruction Authority; and applying to the 

Census of Population and Housing Destination Zones of Australia (Australian Bureau of 

Statistics, 2012), the majority and the representative group of commercial buildings are 

located in the medium-sized class of corporate services and trade, or the small-sized 

class of industry and public services. An average damage ratio for every interval of 

water depth has been considered based on this analysis, which gives a better comparison 

among the aforementioned functions. 

FEMA depth-damage function 

The United States Federal Emergency Management Agency (FEMA) has proposed 

some relative stage-damage functions in the package of Benefit-Cost Analysis (BCA: 

https://www.fema.gov/benefit-cost-analysis). These curves could be utilised for 

estimating both structural and content losses as a percentage of building replacement 

value (FEMA, 2011). It is worth noting that this method has considered depth of water 

as the only influencing factor of flood impacts. Also, based on building use, commercial 

sectors have been classified into five different categories, i.e. retail and clothing, 

schools, electronics, office, and light industrial. Due to the flexibility of relative 

functions in transferring to a new region of study (Cammerer et al., 2013; Merz et al., 

2010), this model has been selected for the comparison part of this study. From the 

curves provided by the BCA package and on the basis of the representative group of 

buildings, the related curve has been utilised. Visual comparisons of the depth-damage 

functions provided by the three methods and relative loss ratios estimated by the 

ANUFLOOD model are shown in Figure 4-6. 
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Figure 4-6: Comparison among applied damage functions from overseas; relative loss ratios 

estimated by the ANUFLOOD model; and the most-likely function of the newly derived method 

 

4.7.2 Results comparison and model validation 

For model validation and error estimation, a three-fold cross-validation procedure 

was carried out based on the data collected from the 2013 Bundaberg flood event. Due 

to the lack independent data for model testing, this technique of model validation has 

been utilised in order to limit problems like overfitting, and to give an insight on how 

the model will generalise to an independent dataset. The cross-validation method will 

create some independent data sets for training of the model (model calibration) and 

testing the performance of the trained model (model validation). In this regard, the 

shuffled data was first partitioned into three equally sized segments (folds). 

Subsequently, three iterations of model calibration and model validation were 

performed; and in each iteration, a different fold of the data was held-out for model 

validation while the remaining two folds were used for model calibration (Refaeilzadeh 

et al., 2009). In each iteration, the newly derived model was calibrated on the basis of 

the general idea explained in Section 5 of this study. This means that the values of rate 

https://en.wikipedia.org/wiki/Overfitting
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control r and Dmax, for the most-likely function, are calculated by means of 

bootstrapping of data and the chi-square test of goodness of fit. Afterwards, the errors of 

the new model estimates, compared to the validation fold ratios, were evaluated by the 

Mean Bias Errors (MBE); the Mean Absolute Error (MAE); and the Root Mean Square 

Error (RMSE) tests. The MBE provides the average deviation of the estimated ratios 

from the validation fold ratios, and depict the direction of the error bias. A positive 

MBE shows an overestimation in the estimated ratios, while a negative value signifies 

an underestimation. The MAE represents the average absolute deviation of the 

estimated ratios from the validation fold ratios and is a quantity used to measure how 

close the estimates are to the empirical data. The RMSE also expressed the variation of 

the estimated ratios from the validation fold ratios and represents the standard deviation 

of the differences between the estimated ratios and observed ratios (Chai and Draxler, 

2014; Seifert et al., 2010). The MBE, MAE and RMSE are calculated for the data set as 

follows:  
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where 
ie  = deviation of the estimated ratios from the validation fold ratios. 

By these statistical comparisons, the performance of each newly derived function was 

assessed with the respective validation fold. In addition to the newly derived model and 

for each validation fold, errors of the other aforementioned models’ estimates were 

calculated. Eventually, the errors were averaged for every damage model. 

Additionally, resampling of observed loss ratios by means of bootstrapping was 

carried out to obtain a 95 % confidence interval of the mean loss ratios. This was 

achieved with 10,000 simulated random samples, which were drawn by replacement 
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from the structural loss records. If the mean loss ratio estimated by the derived models 

fall within the 95 % interval of the resampled data, their performance is assumed to be 

accepted, otherwise it can be rejected. By this approach, the performance of the applied 

damage models in terms of structural damage estimation in the area of study will be 

evaluated (Cammerer et al., 2013; Seifert et al., 2010; Thieken et al., 2008).              

As summarised in Table 4-3, the K-fold cross-validation procedure shows that the 

estimates of FLFAcs are good. The MBE values show no bias; the MAE varies between 

4 and 5 % (5 % on average); and the RMSE changes between 5 and 8 % (6 % on 

average). The results of other models show larger average deviations from the 

validation fold ratios. Also, the other models have larger average values of absolute 

deviation and greater values of standard deviation. This matter signifies a higher 

variation in the errors of the FLEMOcs, FEMA and ANUFLOOD model estimates. As 

summarised in Figure 4-7, the individual differences between the estimated ratios and 

validation folds ratios (residuals) in FLFAcs, in contrast to other models, have less 

magnitude and variation. The FLFAcs clearly achieves better results than the models that 

are not calibrated with the local damage data.  

In addition, the performance of all flood loss models used to estimate the mean loss 

ratios is summarised in Table 4-4. It can be observed that the result of the new model 

with the most-likely functional parameters, lie within the confidence intervals and its 

performance is acceptable. However, results of other models do not lie within the 

confidence intervals of the mean loss ratios and their performance is rejected in this area 

of study. This issue and the K-fold cross-validation procedure illustrates the importance 

of model calibration with the empirical local data sets, particularly when the water depth 

is the only hydraulic factor considered (Cammerer et al., 2013; Chang et al., 2008; 

McBean et al., 1986). Although the results of the FLEMOcs and FEMA models do not 

lie within the confidence intervals, errors of their estimates are not too significant, and 

their performances are much better than the ANUFLOOD model. 

In this study and for investigating cause-and-effect relations between flooding and 

damage, water depth is taken into account as the most dominant influencing factor of 
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flood hazard; and the materials of buildings, absence of basement, use of buildings, 

number of storeys, age of building, and height of storeys have been considered as the 

vulnerability factors of buildings (Kelman and Spence, 2004; Menoni et al., 2012). 

Although damage magnitude could be reliant upon more factors (Grahn and Nyberg, 

2014), by calibrating the loss function with the empirical data set collected from the 

real-world and providing an empirically-based curve, the damage model has been 

validated for use in the conditions of the study area (McBean et al., 1986).
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Table 4-3: Numerical comparison and error estimation for performance of the applied damage functions (MBE: Mean Bias Error; MAE: Mean Absolute 

Error; RMSE: Root Mean Squared Error) 

 MBE MAE RMSE 

 FLFAcs FLEMOcs FEMA ANUFLOOD FLFAcs FLEMOcs FEMA ANUFLOOD FLFAcs FLEMOcs FEMA ANUFLOOD 

Fold 1 0.00 -0.02 -0.01 -0.15 0.05 0.06 0.06 0.15 0.06 0.08 0.08 0.18 

Fold 2 0.00 -0.02 -0.01 -0.17 0.04 0.05 0.05 0.17 0.05 0.06 0.07 0.19 

Fold 3 0.00 -0.02 -0.01 -0.16 0.05 0.06 0.06 0.17 0.08 0.10 0.09 0.20 

Average 0.00 -0.02 -0.01 -0.16 0.05 0.06 0.06 0.16 0.06 0.08 0.08 0.19 
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Table 4-4: Comparison of mean loss ratios estimated by the applied damage models with the resampled loss data (95% confidence interval) 

 FLFAcs FLEMOcs FEMA ANUFLOOD 

 
Mean loss 

ratios 

Within 95% 

interval 

Mean loss 

ratios 

Within 95% 

interval 

Mean loss 

ratios 

Within 95% 

interval 

Mean loss 

ratios 

Within 95% 

interval 

Fold 1 

0.313 Yes 0.292 No 0.296 No 0.157 No 

0.306 (2.5th percentile) 0.313 (97.5th percentile) 

Fold 2 

0.291 Yes 0.270 No 0.280 No 0.114 No 

0.284 (2.5th percentile) 0.292 (97.5th percentile) 

Fold 3 

0.307 Yes 0.281 No 0.296 No 0.149 No 

0.302 (2.5th percentile) 0.308 (97.5th percentile) 

All 

records 

0.304 Yes 0.280 No 0.291 No 0.140 No 

0.297 (2.5th percentile) 0.304 (97.5th percentile) 
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Figure 4-7: Residual plot used for comparing performance of the selected damage functions relative 

to the empirical loss ratios 

     

4.8 Conclusions 

Statistical analyses emphasise the significance of commercial building flood losses 

for the economics of Australia. However, Australian models for commercial loss 

estimation are still limited and their results are subjected to a high level of uncertainty.        

The proposed approach presented in this chapter has attempted to quantify the 

magnitude of direct damages of commercial structures. This approach has suggested a 

damage function for quickly describing the extent of flood losses. The new function 

(FLFAcs) can be utilised for different purposes such as flood management tasks or 

insurance issues. In this model, water depth is taken into account as the most dominant 

influencing factor of flood hazard; and materials of buildings, use of buildings, number 

of storeys, age of building, and height of storeys have been considered as the 

vulnerability factors. In this regard, the newly derived model has been calibrated for the 

geographical conditions of Australia by means of empirical data collected from the 2013 

flood in Bundaberg, Australia. Also, inherent uncertainty of the new model as a result of 

insufficient data and the great variation of commercial building structures have been 
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considered. Although non-residential building losses are less about structural damage 

and more about damage to contents, due to limited availability of data, this model has 

been built only for structural damages. However, as a result of simplicity and flexibility 

of the new function, it is possible for it to be developed by future researches, even for 

using in another region of study.   

In addition, the performance of the new model in comparison to the empirical data 

has been contrasted with two damage functions from overseas and one damage model 

from Australia. Furthermore, statistical comparison and numerical analysis with regards 

to estimating the level of uncertainty and validating the applied damage models were 

conducted. These analyses show that accuracy of results is totally dependent on model 

calibration. Also, they show that the results of the Australian model are no longer 

sufficiently accurate. Hence, there is an urgent need for a project to develop new 

functions for commercial flood damage estimation.  

Since the vulnerability of commercial buildings to flood is of particular interest to the 

insurance industry, databases of insurance claims can benefit this research considerably. 

Therefore, reconciliation with insurance claims data and consideration of more flood 

loss events will benefit future works.  On the other hand, further research will be aimed 

at incorporating more influencing factors of hazard, exposure and vulnerability; 

considering content damages as well as structural damages; taking into account more 

variations of commercial sectors; and last but not least, enhancing the level of precision 

in damage documentation procedures.  
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5 FLOOD LOSS 

MODELLING WITH FLF-IT      
A NEW FLOOD LOSS FUNCTION FOR ITALIAN RESIDENTIAL 

STRUCTURES [Published Chapter]3 

 

 

 

5.1 Abstract  

The damage triggered by different flood events costs the Italian economy millions of 

euros each year. This cost is likely to increase in the future due to climate variability 

and economic development. In order to avoid or reduce such significant financial losses, 

risk management requires tools which can provide a reliable estimate of potential flood 

impacts across the country. Flood loss functions are an internationally accepted method 

for estimating physical flood damage in urban areas. In this study, we derived a new 

flood loss function for Italian residential structures (FLF-IT), on the basis of empirical 

damage data collected from a recent flood event in the region of Emilia-Romagna. The 

function was developed based on a new Australian approach (FLFA), which represents 

the confidence limits that exist around the parameterised functional depth-damage 

relationship. After model calibration, the performance of the model was validated for 

                                                 

3 Hasanzadeh Nafari, R., Amadio, M., Ngo, T., Mysiak, J., 2017. Flood loss modelling with FLF-IT: A 

new flood loss function for Italian residential structures. Nat. Hazards Earth Syst. Sci. 17, 1047–1059 
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the prediction of loss ratios and absolute damage values. It was also contrasted with an 

uncalibrated relative model with frequent usage in Europe. In this regard, a three-fold 

cross-validation procedure was carried out over the empirical sample to measure the 

range of uncertainty from the actual damage data. The predictive capability has also 

been studied for some sub-classes of water depth. The validation procedure shows that 

the newly derived function performs well (no bias and only 10% mean absolute error), 

especially when the water depth is high. Results of these validation tests illustrate the 

importance of model calibration. The advantages of the FLF-IT model over other Italian 

models include calibration with empirical data, consideration of the epistemic 

uncertainty of data, and the ability to change parameters based on building practices 

across Italy. 

5.2 Introduction 

Floods are the natural hazards that cause the largest economic impact in Europe today 

(European Environment Agency, 2010). Italy is no exception, with about 80% of its 

municipalities being exposed to some degree of hydrogeological hazards (Zampetti et 

al., 2012). Regarding flood hazard frequency, 8% of Italy’s territory and 10% of its 

population are exposed to a flood probability of once every 100 to 200 years 

(ANCE/CRESME, 2012; Trigila et al., 2015). This issue is reflected in over a billion 

euros spent from 2009 to 2012 on recovery from extreme hydrological events (Zampetti 

et al., 2012). Italy is, in fact, the European country where floods generate the largest 

economic damage per annum (Alfieri et al., 2016). This is especially worrisome 

considering that the frequency of extreme flood losses may be doubled at least by 2050 

in Europe due to climatic change factors and urban expansion (Jongman et al., 2014). 

Climate variability already affects rainfall extremes and the peak volumes of discharge 

in rivers (Alfieri et al., 2015; Karagiorgos et al., 2016). Relentless urban sprawl within 

catchments alters the water run-off speed and propagation while increasing the value of 

exposed land use (Barredo, 2009). In order to effectively prevent massive losses, 

disaster risk management requires estimation well in advance of the frequency and 

magnitude of potential flood events, and their consequences in terms of economic 
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damages (Elmer et al., 2010; Hammond et al., 2015; Kaplan and Garrick, 1981; Neale 

and Weir, 2015; Thieken et al., 2008; UNISDR, 2004). Therefore, it is indispensable to 

provide decision makers with reliable assessment tools that are able to produce such 

knowledge, after which an efficient risk reduction strategy can be adequately planned 

(Emanuelsson et al., 2014; McGrath et al., 2015; Merz et al., 2010; Penning-Rowsell et 

al., 2005). 

In general, flood losses are classified as marketable (tangible) or non-marketable 

(intangible) values, and as direct or indirect (Jonkman, 2007; Kreibich et al., 2010; 

Meyer et al., 2013; Molinari et al., 2014a; Thieken et al., 2005). Direct damage takes 

place when the floodwater physically inundates buildings and structures, whereas 

indirect damage accounts for the consequences of direct damage on a wider scale of 

space and time (Hasanzadeh Nafari et al., 2016c). The tools employed to assess flood 

risk consist of a variety of damage models, with differing methods depending on the 

type of accounted losses. While input-output models, computable general equilibrium 

models and other econometric tools are often used to estimate indirect economic losses 

(Carrera et al., 2015; Hallegatte, 2008; Koks et al., 2015), the focus of most flood 

damage models is still on the estimation of direct, tangible losses using stage-damage 

curves. Stage-damage curves or flood loss functions are used to depict a relationship 

between water depth and economic damage for a specific kind of structure or land use 

(Jongman et al., 2012; Kreibich and Thieken, 2008; Merz et al., 2010; Messner et al., 

2007; Thieken et al., 2009). Damage curves can be empirical or synthetic. Empirical 

curves are drawn based on actual data collected from one specific event. Due to the 

differences in flood and building characteristics, they cannot be directly employed in 

different times and places (Gissing and Blong, 2004; McBean et al., 1986). To resolve 

this issue, general synthetic curves based on a valuation survey have been created for 

different types of buildings. Valuation surveys assess how the structural components are 

distributed in the height of a building (Barton et al., 2003; Smith, 1994). Afterwards, the 

magnitude of potential flood losses is estimated based on the vulnerability of structural 

components and via “what-if” questions (Gissing and Blong, 2004; Merz et al., 2010). 

Damage functions can also be distinguished as absolute or relative. The first type states 
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the damage directly in monetary terms, while the relative type states the damage as a 

percentage of the total exposed value, which can refer to the total replacement value or 

the total depreciated value (Kreibich et al., 2010). Relative functions have an advantage 

over absolute functions, namely that they are more flexible for transfer to different 

regions or years since the damage ratio is independent of the changes in market values 

(Merz et al., 2010). Still, both types are developed on sample areas which have 

particular geographical characteristics that affect both the quality of the exposed value 

and the flood phenomena (McGrath et al., 2015; Proverbs and Soetanto, 2004). 

Therefore, transferred models may carry a high level of uncertainty, unless they are 

calibrated with an empirical dataset collected from the new study area (Cammerer et al., 

2013; Hasanzadeh Nafari et al., 2015; Molinari et al., 2014b). 

Although Italy has seen several flood disasters in recent years, flood records do not 

enable development or validation of a national-loss flood function because the 

information is still poor, fragmented and inconsistent. This issue largely depends on the 

lack of an established official procedure for the collection and the storage of damage 

data (Molinari et al., 2014b). Another obstacle is the heterogeneity across different 

regions of digital geographic information, which is the key to correctly representing the 

driving factors of exposure and vulnerability influencing the sustained damage. Few 

attempts at drawing a depth-damage relation from post-disaster reports have been made 

(Amadio et al., 2016; Luino et al., 2009; Molinari et al., 2014b, 2012; Papathoma-Köhle 

et al., 2012; Scorzini and Frank, 2015), while other uncalibrated synthetic functions 

have been derived from pan-European studies (Huizinga, 2007). The use of such 

uncalibrated functions on the Italian territory has proven troublesome (Amadio et al., 

2016), showing a large degree of uncertainty. 

Our research aims to calibrate and validate a new relative flood loss function for 

Italian residential structures (FLF-IT) based on real damage data collected from one 

large river flood event in the region of Emilia-Romagna at the beginning of 2014. The 

focus of this study is on direct tangible damage, and the spatial scale is of the order of 
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individual buildings. This research builds on a newly derived Australian approach 

called FLFA (Hasanzadeh Nafari et al. 2016a, 2016b).  

5.3 Case study 

The region of Emilia-Romagna is located in northern Italy, on the southern side of the 

Po River, the longest of all Italian rivers. This region has the greatest flood-prone area 

both in relative and absolute terms: about 10,000 km2, including 64% of the population 

is exposed to a medium flood probability (return period between 100 and 200 years), 

while 2,500 km2 including 10% of the population, is exposed to a high probability 

(return period between 20 and 50 years) (Trigila et al., 2015). This includes more than 

half of the region’s territory. Our empirical data come from a flood generated by the 

Secchia River in 2014 near the town of Modena, in the central part of Emilia-Romagna.  

5.3.1 Event description 

January 2014 was a dramatic month for floods in Italy, with 110 flood events 

recorded over a span of 23 days due to extreme meteorological conditions. Severe 

precipitations hit central Emilia-Romagna between the 17th and the 19th of January, with 

an areal mean of 125 mm of cumulative rain over 72 hours flowing in the Secchia 

catchment. The increase in the river flow volumes caused heavy stress on the levees, 

which stand 7-8 meters over the flood plain. At around 06:00 LT, approximately 10 m 

of the eastern Secchia levee was overwashed and breached at the top by 1 m, which 

initiated flooding of the countryside. In 9 hours, the levee section was completely 

destroyed for a length of 80 meters, spilling 200 m3 s-1 in the surrounding plain and 

flooding nearly 65 km2 of rural land (Figure 5-1) (D’Alpaos et al., 2014). Seven 

municipalities were affected, with the small towns of Bastiglia and Bomporto suffering 

the largest share of losses. Both towns, including their industrial districts, remained 

flooded for more than 48 hours. The total volume of water inundating the area was 

estimated to be around 36 million m3 (D’Alpaos et al., 2014). 
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Figure 5-1: Identification of case study, flooding from the river Secchia during January 2014 in 

central Emilia-Romagna, northern Italy 

5.3.2 Data description 

The information about cumulative water depths comes from the hydraulic simulation 

of the event produced by the technical-scientific committee in the official report 

(D’Alpaos et al., 2014; Vacondio et al., 2014). The extent of the simulated flood is 

nearly 5 km2, with an average depth of 1 m. The flow volume at the breach is calculated 

using the 1-D model HEC-RAS calibrated on recorded observations from the event. The 
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evolution of the flooding is simulated by a 2-D hydraulic model using the finite-volume 

method over a digital terrain model (DTM) obtained by lidar scans at a 1 m resolution. 

The simulation also accounts for the gradual change in the size of the breach from 10 to 

80 meters (Vacondio et al., 2014).  

A database of damage declared by residential properties has been made available for 

this research by the local authorities. Damage records are listed by address for the three 

municipalities of Bastiglia (70% of the total damage), Bomporto (24%), and Modena 

(6%). The total damage sums up to EUR 41.5 million, of which 54% is damage to 

structural parts, including installations; 33% is damage to movable contents, meaning 

furniture and common domestic appliances; and 13% is represented by registered 

vehicles, such as cars and motorcycles. For the purpose of our study, only the structural 

damage is considered. The recorded damage is compared to the average market values 

of the residential properties, as reported by the cadastral map for the 6 months preceding 

the flood event (Agenzia delle Entrate, 2014). The majority of residential structures in 

the area share the same general characteristics: they are brick or concrete buildings built 

in the last 30 years, with no underground basement or parking (slab on ground). Houses 

have at least two or three floors. However, only the ground floors have been affected in 

this particular event. 

The information related to water depth, total structural damage and average market 

value is linked together at the building scale (Fig. 5-2) by combining the street number 

points and residential buildings perimeters from the official regional geodatabase 

(Regione Emilia Romagna, 2011). The mean of cumulative water depths simulated by 

the hydraulic model is calculated within the area of each building unit. Accordingly, 

each address linked to a damage record is first georeferenced as a street number point; 

then the points falling within the same building unit are summed into an aggregated 

value representing the total structural damage that occurred in that building, including 

private dwellings and common parts. This spatial join is necessary since building 

perimeters do not include any information about addresses. The procedure is performed 

successfully for EUR 21.7 million, corresponding to 97% of the total residential 
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damage. The remaining 3% of records are excluded due to incomplete addresses or 

inconsistency with the spatial data. Percentages of damage vs. depths of water for all 

613 final samples are depicted in Fig. 5-3. 

 

 

Figure 5-2: Visualisation of the empirical damage records suffered by the individual dwellings 

during the flood event of 2014. Records are projected to official street number points by using their 

"address" field. The information is then transferred from the points to the building features that 

contains them. The point records that fall within the same building perimeter are summed up into 

one aggregated damage value for each residential building. About 97% of damage records are 

correctly projected. The remaining 3% of damage records are discarded due to inconsistent 

projection, incomplete address or gaps in the record data. The colour gradient (yellow to red) 

indicates the magnitude of the damage for both individual points and building units. 
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Figure 5-3: Empirical data utilised to calibrate the FLF-IT model (613 relative damage records in 

the original dataset) 

5.4 The FLFA method 

The FLFA method is based on a simplified synthetic approach called the sub-

assembly method, proposed by the Hazus technical manual (FEMA, 2012). This method 

measures the extent of losses for each stage of floodwater and suggests a flexible curve 

that accounts for the variability in the characteristics of structures. In the first step, one 

or more representative building categories are selected from the study area. The ratio of 

damage for every stage of water and within each category of the building is a function 

of the vertical distribution of structural components (i.e. vulnerability and the total value 

exposed to flood) (Lehman and Hasanzadeh Nafari, 2016). More specifically, each 

structural component starts suffering damage after a specific stage is reached. 

Commonly the first decimetres of water cause damage to some of the most valuable 

items, such as walls, floors, insulation and electrical wiring (FEMA, 2012). 

Accordingly, the relationship between the damage percentage (dh) and water depth can 

be described by a root function (Cammerer et al., 2013; Elmer et al., 2010; Kreibich and 
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Thieken, 2008). The following function (1) was developed by Hasanzadeh Nafari et al. 

(2016a) for the Australian case study: 

𝑑ℎ = (
ℎ

𝐻
)

1

𝑟
×  𝐷𝑚𝑎𝑥   (1) 

The root (r) controls the rate of alteration in the percentage of damage relative to the 

growth of the water depth (h) over a total height (H) of the floor. The Dmax is the total 

percentage of damage corresponding to the total height of the floor. A higher value of r 

means a faster increase in the rate of damage. The obtained curve is then adjusted and 

calibrated using the empirical data collected from the selected study area. Hence, this 

approach is defined as an empirical-synthetic method. Due to the inherent uncertainty in 

the data sample, the study employed a bootstrapping approach, which produces three 

stage-damage functions (i.e. most likely, maximum and minimum damage functions) 

for each type of building. This range of estimate describes confidence limits around the 

functional parameters and represents the uncertainty that exists in the data sample. The 

advantages of this simplified synthetic approach include calibration with empirical data, 

a better level of transferability in time and space, consideration of the epistemic 

uncertainty of data, and the ability to change parameters based on building practices 

across the world. 

5.5 Calibration of FLF-IT 

Based on the formula represented previously, the model calibration process includes 

choosing the most appropriate values for the root function and the maximum percentage 

of damage (i.e. r and Dmax, respectively), with reference to the empirical dataset 

(Hasanzadeh Nafari et al., 2016a). The selection will be made by the chi-square test of 

goodness of fit, to minimise predictive errors. Also, instead of a deterministic regression 

analysis, this study has relied on the probabilistic relationship among the percentage of 

damage and other damage-related parameters (i.e. building and flood characteristics) 

(Hasanzadeh Nafari et al., 2016b). In this regard, a bootstrapping approach has been 

employed to resample the damage data 1,000 times. This method assists in exploring the 
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confidence limits around the parameters and illustrates the epistemic uncertainty of the 

empirical damage data (Lehman and Hasanzadeh Nafari, 2016). To be more specific, 

• first, the original dataset including 613 data points was resampled using a 

bootstrapping approach; 

• for the new resample, the most appropriate value of the root function and the 

maximum percentage of damage were selected by the chi-square test of goodness of 

fit; 

• the two previous steps were repeated 1,000 times, and 1,000 sets of parameters (i.e. r 

and Dmax) were generated as the result; 

• finally, by the above iteration, the averages of the 1,000 calibrated parameters 

converged to a fixed value considered as the most likely scenario. The most likely 

parameters produce the smallest cumulative error compared to the actual damage 

data. 

• Also, from the 1,000 sets of parameters generated above, the function that maximises 

the depth-damage relationship was taken as a maximum damage curve, and the 

observation that created the minimum depth-damage relationship was considered for 

the minimum depth-damage function. 

Results of the model calibration are presented in Table 5-1 and Fig. 5-4. 

 

Table 5-1: Number of samples and range of r and Dmax values, calculated by the bootstrap and 

chi-square test of goodness of fit 

Number of Samples Parameters 

Range of parameters 

Minimum Most likely Maximum 

613 

r 2.7 2 1.7 

Dmax 10% 20% 40% 

 

 



Chapter 5: Flood Loss Modelling with FLF-IT       

 

-129- 

 

 

Figure 5-4: Visualisation of minimum, most likely and maximum damage functions, calculated by 

bootstrap and chi-square test of goodness of fit 

5.6 Model validation 

5.6.1 Applied damage models 

Besides FLF-IT, the Damage Scanner as an uncalibrated relative model with frequent 

usage in Europe has been selected for comparison in this study. The Damage Scanner 

model (de Bruijn, 2006; Klijn et al., 2007) is based on depth-damage curves previously 

developed by the synthetic approach in the Netherlands using data from what-if 

analyses at the building scale (Kok et al., 2004). These curves estimate the magnitude of 

damage separately for building structure and movable content. The damage is expressed 

in relation to an average maximum damage value per square meter, which varies 

according to land use classes (e.g. residential, industrial, agriculture, and infrastructure). 

The Damage Scanner model has been employed for predictive purpose in various 

studies (Aerts and Botzen, 2011; Bouwer et al., 2010; de Moel et al., 2011; Koks et al., 

2012; Poussin et al., 2012; Ward et al., 2011), and it has been more recently updated 

including additional land use sub-classes (de Moel et al., 2013; Koks et al., 2014). The 
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uncertainty of Damage Scanner has been investigated in comparison to other damage 

models (Bubeck et al., 2011; Jongman et al., 2012), and its transferability has been 

evaluated for use in different areas of study such as northern Italy (Amadio et al., 2016). 

Damage Scanner is, in fact, easy to tailor to land use description available for Italy, and 

because it expresses damage in relative terms, it can be adapted to work on region-

specific maximum values. For the purpose of comparison with FLF-IT, the curve 

related to residential structure damage has been selected from the Damage Scanner set 

and applied at building scale to the residential units using the same average market 

values and simulated water stages employed to produce the FLF-IT. It is worth noting 

that the predicted absolute damage values are calculated by multiplying the estimated 

loss ratio by the average market value and the area of each property. 

5.6.2  Result comparison and model validation 

Results of the applied damage models have been compared with the observed loss 

data, and their performances have been validated in contrast to real damage data. Due to 

the lack of an independent dataset, a three-fold cross-validation technique was 

employed for this purpose (Seifert et al., 2010). Accordingly, the original damage 

records including 613 data points were first shuffled and partitioned into three equally 

sized subsets. Then, three iterations of model calibration and model testing were 

performed. In each iteration, one subset including 204 samples was singled out for 

model testing, while the remaining two parts including 409 data points were used for 

model calibration (Refaeilzadeh et al., 2009). Model calibration in each iteration was 

performed based on the approach explained earlier. Eventually, the loss ratio of the 

held-out subset was estimated by the FLF-IT model calibrated without it, and the results 

were compared with the actual records. Errors including the mean bias error (MBE), the 

mean absolute error (MAE), and the root mean square error (RMSE) were calculated 

and averaged over all three iterations. The MBE illustrates the direction of the error bias 

(i.e. a positive MBE shows an overestimation in the predicted values, while a negative 

MBE depicts an underestimation); the MAE shows how close the estimates are to the 

actual damage ratios; and the RMSE signifies the variation of the predicted ratios from 
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the actual records (Chai and Draxler, 2014; Seifert et al., 2010). In addition to FLF-IT 

and for each iteration, errors of the Damage Scanner model’s estimates were calculated. 

The results are presented in Table 5-2. 

 

Table 5-2: Error estimation for the performance of the FLF-IT model (MBE: mean bias error; 

MAE: mean absolute error; RMSE: root mean squared error) 

 MBE MAE  RMSE 

 FLF-IT 
Damage 

Scanner 
FLF-IT 

Damage 

Scanner 
 FLF-IT 

Damage 

Scanner 

Iteration 1 0.015 0.152 0.092 0.188  0.119 0.212 

Iteration 2 -0.010 0.125 0.104 0.177  0.157 0.204 

Iteration 3 -0.009 0.125 0.091 0.164  0.133 0.188 

Average 0.00 0.13 0.10 0.18  0.14 0.20 

 

This table clearly shows that FLF-IT has a better performance than the Damage 

Scanner model, which is not calibrated with the local damage data.  The average of the 

MBE over all iterations shows no bias and represents only around 1% bias in each 

iteration. The MAE is 10% on average, and RMSE ranges between 12 and 16% (14% 

on average). The results of the Damage Scanner model show 13% average deviation 

from the validation subsets ratios, larger average values of absolute error, and higher 

variation of the predicted ratios from the actual records. Overall, the small value of the 

deviations and the low variation of the errors signify that the new model performance is 

accurate.  

The predictive capability has also been studied for some sub-classes of water depth. 

By this test, the performance of the applied damage models will be evaluated for 

different stages of the flood. Figs. 5-5 and 5-6 show the precision of the results and the 

number of relative damage records for seven different sub-classes of water depth. These 

figures clearly show that the uncertainty of FLF-IT is less than the Damage Scanner 

model, and the results justify the overall better performance of the FLF-IT model. This 
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test shows that the application of the Damage Scanner model using the original 

uncalibrated maximum damage values leads to overestimating the actual damage that 

occurred during this flood event, especially when the water depth is high. In contrast to 

Damage Scanner, FLF-IT performs well specifically when the flood is deep, the extent 

of damage is more considerable, and the prediction performance of the model is more 

important. The high number of samples with a depth more than 60 centimetres supports 

the reliability of this outcome. 
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Figure 5-5: Comparison of the flood damage estimation models’ precision per water-depth class (MAE: mean absolute error; number of damage records for 

each sub-class of water depth, respectively, is 14, 36, 52, 96, 125, 222, and 68) 
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Figure 5-6: Comparison of the flood damage estimation models’ precision per water-depth class (RMSE: root mean square error; number of samples for 

each sub-class of water depth, respectively, is 14, 36, 52, 96, 125, 222, and 68)
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In addition to the above comparison on the loss ratios, the performance of the model 

is also validated for predicting the absolute damage values. As stated before, the overall 

reported loss for the 613 cases (building fabric) amounted to EUR 21.7 million. In this 

regard and for each iteration, the absolute damage records are resampled using the 

bootstrapping approach 10,000 times, and the 95% confidence interval of the total 

losses was calculated. If the total damage value estimated by the models falls within the 

95% confidence interval, their performance is accepted. Otherwise, it is rejected 

(Cammerer et al., 2013; Seifert et al., 2010; Thieken et al., 2008). By this approach, the 

performance of the applied damage models in terms of structural damage estimation in 

the area of study will be evaluated. The results are presented in Table 5-3, which shows 

that the results of all iterations of the FLF-IT model with the most likely functional 

parameters r and Dmax lie within the 95% confidence intervals, and the FLF-IT model 

has an acceptable performance. However, results of Damage Scanner do not lie within 

the confidence intervals of the mean loss ratios, and its performance is rejected in this 

area of study. Fig. 5-7 represents the workflow and the methodological steps of this 

study.  

 

Table 5-3: Comparison of total absolute losses estimated by FLF-IT with the 95% confidence 

interval of the resampled damage records 

 

95% confidence interval 

Estimated damage values (in 10^6 EUR) 

 FLF-IT 

Within 

95% 

interval 

Damage 

Scanner 

Within 

95% 

interval 

Iteration 1 4.88-6.8 (2.5th-97.5th  percentile) 6.5 Yes 16.2 No 

Iteration 2 5.81-7.8 (2.5th-97.5th  percentile) 7.7 Yes 15.6 No 

Iteration 3 8.07-10.4 (2.5th-97.5th  percentile) 10.1 Yes 21.8 No 

All 

records 
19.94-24.5 (2.5th-97.5th  percentile) 24.3 Yes 53.7 No 
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Results of these validation tests illustrate the importance of model calibration, 

especially when the water depth is the only hydraulic parameter taken into account 

(Cammerer et al., 2013; Chang et al., 2008; McBean et al., 1986). In other words, flood 

damage, being a complicated process, could be dependent on more damage-influencing 

parameters than those considered here (Fuchs et al., 2011; Grahn and Nyberg, 2014; 

Hasanzadeh Nafari et al., 2016c; Merz et al., 2013; Schröter et al., 2014). However, 

when the loss function is calibrated with an actual damage dataset and an empirically 

based model is provided, the function estimations are good (i.e. low predictive error, 

low variation, and acceptable reliability in results), and its performance is validated for 

use in flood events with the same geographical conditions (i.e. flood characteristics and 

building specifications) as the area of study (Hasanzadeh Nafari et al., 2016b; McBean 

et al., 1986).  

While the FLF-IT model is shown to be more accurate, there are still some limitations 

that can be the subject of new research. Model validation in this study was based on 

random samples which were not independent of the data used for model calibration, and 

this test does not give information about the transferability of the FLF-IT model. Hence, 

improvements can be made by considering more influencing factors of hazard, exposure 

and vulnerability; validation with more actual damage records from other study areas in 

Italy; and considering other types of structure.  
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Figure 5-7: Visualisation of the workflow and the methodological steps of the study 

5.7 Conclusions 

Floods are frequent natural hazards in Italy, triggering significant negative 

consequences on the economy every year. Their impact is expected to worsen in the 

near future due to socio-economic development and climate variability. To be able to 

reduce the probability and magnitude of expected economic losses and to lessen the cost 

of compensation and restoration, flood risk managers need to be correctly informed 

about the potential damage from flood hazards on the territory. A loss function that can 

reliably estimate the economic costs based on available data is the key to achieving this 

objective. However, despite a significant number of flood disasters hitting Italy every 

year, few attempts at developing a flood damage model from post-disaster reports have 

been made. 

Flood loss functions are an internationally accepted method for estimating direct 

flood damage in urban areas. Flood losses can be classified as marketable or non-

marketable values and as direct or indirect damages. This study focused on direct, 

marketable damage due to riverine floodwater inundation. We employed a newly 

derived Australian approach (FLFA) with empirical damage data from Italy to develop a 

synthetic, relative flood loss function for Italian residential structures (FLF-IT). The 
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FLFA approach takes data of damage and depth, stratified by building classifications, 

and uses the chi-square test of goodness of fit to fix a parameterised function to 

compute depth-damage estimates. Parameters include the height of the stories, 

maximum damage as a percentage of the total building value, and the elevation of water 

at which buildings start being damaged. Additionally, FLFA illustrates a bootstrapping 

approach to the empirical data to assist in describing confidence limits around the 

parameterised functional depth-damage relationship. Accordingly, the advantages of the 

new model (FLF-IT) include calibration with empirical data, consideration of the 

epistemic uncertainty of data, and the ability to change parameters based on building 

practices across Italy. After model calibration, its performance was also validated for 

predicting the loss ratios and absolute damage values. Also, the performance of the new 

model in comparison to the empirical data has been contrasted with an uncalibrated 

relative model with frequent usage in Europe. In this regard, a three-fold cross-

validation procedure and the usual bootstrap approach were applied to the empirical 

sample to measure the range of uncertainty from the actual damage data. This validation 

test was selected to compensate for the lack of comparable data from an independent 

flood event. Finally, the predictive capability has also been studied for some sub-classes 

of water depth. The validation procedure shows that estimates of FLF-IT are good (no 

bias, 10% mean absolute error, and 14% root mean square error), especially when the 

flood is deep, and its performance is acceptable. However, the application of the 

Damage Scanner model using the original uncalibrated maximum damage values leads 

to overestimating the actual damage that occurred during this flood event. 

Results of these validation tests depict the importance of model calibration, especially 

when the water depth is the only hydraulic parameter considered. In other words, when 

the loss function is calibrated and an empirically based model is provided, the function 

performs well (i.e. low predictive error, low variation, and acceptable reliability), and its 

performance is validated for use in events with the same geographical conditions as the 

area of study. Awareness of these issues is necessary for decision-making in flood risk 

management. Further research will be aimed at considering some additional parameters 
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that may govern the significance of the damages for a given depth. An independent 

dataset is required to evaluate the predictive capacity and transferability of the model. 
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6 AN ASSESSMENT OF 

THE EFFECTIVENESS OF 

TREE-BASED MODELS                   
FOR MULTI-VARIATE FLOOD DAMAGE ASSESSMENT IN 

AUSTRALIA [Published Chapter]4 

 

 

 

6.1 Abstract 

Flood is a frequent natural hazard that has significant financial consequences for 

Australia. In Australia, physical losses caused by floods are commonly estimated by 

stage-damage functions. These methods usually consider only the depth of the water 

and the type of buildings at risk. However, flood damage is a complicated process, and 

it is dependent on a variety of factors which are rarely taken into account. This study 

explores the interaction, importance, and influence of water depth, flow velocity, water 

contamination, precautionary measures, emergency measures, flood experience, floor 

area, building value, building quality, and socioeconomic status. The study uses tree-

based models (regression trees and bagging decision trees) and a dataset collected from 

2012 and 2013 flood events in Queensland, which includes information on structural 

                                                 

4 Hasanzadeh Nafari, R., Ngo, T., Mendis, P., 2016. An Assessment of the Effectiveness of Tree-Based 

Models for Multi-Variate Flood Damage Assessment in Australia. Water 8, 282. 
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damages, impact parameters, and resistance variables. The tree-based approaches show 

water depth, floor area, precautionary measures, building value, and building quality to 

be important damage-influencing parameters. Furthermore, the performance of the tree-

based models is validated and contrasted with the outcomes of a multi-parameter loss 

function (FLFArs) from Australia. The tree-based models are shown to be more 

accurate than the stage-damage function. Consequently, considering more parameters 

and taking advantage of tree-based models is recommended. The outcome is important 

for improving established Australian flood loss models and assisting decision-makers 

and insurance companies dealing with flood risk assessment. 

6.2 Introduction 

In recent decades, flood risk is growing, due to climate change and increase in 

vulnerability of properties at risk (Elmer et al., 2012; Hasanzadeh Nafari et al., 2016a; 

Kundzewicz et al., 2005). In Australia, floods are the most costly of all disaster types 

(Box et al., 2013), contributing 29% of the total cost of the nation’s economy and the 

built environment (Bureau of Transport Economics, 2001; Hasanzadeh Nafari et al., 

2016b). Accordingly, flood risk management is attracting more attention (Kreibich et 

al., 2010; Schröter et al., 2014; van Ootegem et al., 2015), and results are used to inform 

disaster management policy and support the development of risk reduction measures 

(Emanuelsson et al., 2014; Merz et al., 2010). Flood risk management has to be based 

upon an appropriate evaluation of flood hazard and flood vulnerability (Chen et al., 

2016; Olsen et al., 2015), including an assessment of damage and effectiveness of risk 

reduction measures (Bubeck et al., 2016; Merz et al., 2013; Morita, 2014). Therefore, 

loss estimation and consequence assessment is an indispensable part of flood risk 

management (de Moel et al., 2015; Handmer et al., 2005). However, compared to the 

available methods and information on flood hazard, flood damage models are still 

crude, and understanding of the damage process is largely unknown (Gall et al., 2009; 

Gerl et al., 2014; Merz et al., 2013, 2010). 
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Flood losses can be grouped into four different classifications: direct tangible, direct 

intangible, indirect tangible, and indirect intangible damages (Wind et al., 1999). The 

direct classification takes place due to physical contact with flooded objects, but the 

indirect category is induced by the direct damage on a wider scale of space and time 

(Jonkman and Dawson, 2012; Meyer et al., 2013; Thieken et al., 2005). Tangible losses 

can be quantified financially, while intangible losses cannot (André et al., 2013; 

Kreibich et al., 2010). The existing methods for flood damage assessment are 

commonly focused on direct tangible damages of residential, industrial, agricultural, 

and commercial sectors. However, residential buildings are usually more affected by 

floods (Chinh et al., 2015). Consequently, the focus of this study is on direct, tangible 

damage to residential building structures after a short inundation. 

Stage-damage functions are the international standard of flood loss assessment 

(Cammerer et al., 2013; Hasanzadeh Nafari et al., 2016a; Thieken et al., 2006). The 

simplicity of stage-damage functions is the main reason for their common usage. 

However, studies have shown that they might be subject to significant uncertainties 

since some influencing parameters are neglected in their damage assessment (Chinh et 

al., 2015; Merz et al., 2013). Flood damage is a complicated process and is dependent 

on a variety of parameters. These can be classified into impact parameters (e.g. flood 

depth, flood duration, flow velocity, water contamination, and return period) and 

resistance parameters (e.g. building characteristics, private precaution, early warning, 

emergency measures, flood experience, and socioeconomic status) (Thieken et al., 

2005). These parameters may not be independent of each other, and their single or joint 

effects are widely unknown (Merz et al., 2013). However, the majority of flood damage 

models have attempted to propose simplified approaches based on the type or use of 

elements at risk and the inundation depth of water (Schröter et al., 2014). Consequently, 

using these models might increase the uncertainty of results, particularly when they are 

employed in study areas other than the area of origin (Cammerer et al., 2013; Chang et 

al., 2008; Hasanzadeh Nafari et al., 2016b; McBean et al., 1986).  
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Nonetheless, there are some exceptions. Wind et al. (1999); Penning-Rowsell and 

Green (2000); Smith (1994); and Parker et al. (2007) studied the effects of early 

warning time and preparedness on the magnitude of flood damages (Merz et al., 2013; 

Parker et al., 2007; Penning-Rowsell and Green, 2000; Smith, 1994; Wind et al., 1999), 

and some multi-parameter models have recently been developed for quantifying the 

single or joint effects of influencing parameters (Chinh et al., 2015). For instance, in the 

UK, a conceptual model has been drawn up to suggest the critical parameters that 

should be considered in flood loss assessment, albeit without discussing the weight of 

contributions or the importance of parameters (Merz et al., 2013; Nicholas et al., 2001). 

In Japan, a multi-variate model has been developed by Zhai et al. (2005), although the 

performance of the model has not been validated or compared with other flood loss 

models (Merz et al., 2013; Zhai et al., 2005). In Germany, a Bayesian network for flood 

damage assessment has been developed by Vogel et al. (2013) (Vogel et al., 2013). 

Another multi-parameter model is related to 2002, 2005 and 2006 flood events in 

Germany and has been established and developed by Thieken et al. (2005), Kreibich et 

al. (2005, 2007) and Elmer et al. (2010). This multi-parameter model (FLEMO) has 

been developed, applied, and validated for private households and companies at both the 

micro- and meso-scale (Elmer et al., 2010; Kreibich and Thieken, 2008; Kreibich et al., 

2010, 2007, 2005; Seifert et al., 2010; Thieken et al., 2008, 2006, 2005). These studies 

have demonstrated that multi-parameters consideration can improve flood loss 

modelling in Germany (Merz et al., 2013).  

The interaction or influence of different parameters can be explored with a tree-based 

modelling statistical analysis. This approach has frequently been used by hydrology and 

water resource researchers. However, it is still novel in the domain of flood-loss 

modelling. Merz et al. (2013) have recently analysed the FLEMO flood loss model 

dataset with a tree-based data mining approach. The results of this study revealed that 

the depth of water, area of buildings, return period of flood, contamination, duration of 

flooding, and precautionary measures, respectively, have the highest influences on flood 

loss assessment in the region of study (Chinh et al., 2015; Merz et al., 2013). Also, these 

analyses show that the tree-based damage model is more accurate than the FLEMO 
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multi-parameter model. Another study with the same concept has been developed for 

the city of Can Tho in the Mekong Delta. In this area of study, as opposed to Germany, 

the flood had a shallow depth with a long duration. Consequently, inundation duration, 

equated with the depth of water, was the greatest influencing factor. In addition to these 

two parameters, the single or joint effects of 22 more predictors have been evaluated 

and examined (Chinh et al., 2015).  

To our knowledge, the tree-based approach has not been developed and validated for 

Australia, and we hypothesise that this method would be more accurate than the existing 

traditional stage-damage functions. The objective of this study is to employ tree-based 

data mining methods to examine the effect and importance of damage-influencing 

parameters using a dataset collected from 2012 and 2013 flood events in Queensland. 

The performance of the tree-based models is also compared with the outcomes of a 

newly established multi-parameter loss function (FLFArs) from Australia. 

6.3 Study Area and Data 

For this study, two areas were chosen. The first survey area is the city of Bundaberg 

in Queensland, Australia, located in the vicinity of the Burnett River waterway north of 

the state capital, Brisbane (Figure 6-1). The Burnett River catchment is located in south-

east Queensland, with the main system incorporating the rivers of Three Moon Creek, 

Burnett River, Nogo Creek, Auburn River and the Boyne River, in addition to many 

other creeks and tributaries. The total Burnett River catchment area is approximately 

33,000 square kilometres. This area is bound by the catchments of the Fitzroy and 

Kolan Rivers to the north; the Dawson and Condamine Rivers to the east and the 

Brisbane and Mary Rivers to the South. The Burnett River catchment has had a long 

history of flooding that has impacted both the urban centres and rural areas (North 

Burnett Regional Council, 2014). The Bundaberg ground elevation and the Burnett 

River catchment are illustrated in Figures 6-2 and 6-3. In recent years, the city of 

Bundaberg has experienced some extreme flood events. The most recent flood 

responses from Bundaberg Regional Council date back to the floods in November 2010, 
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January 2013, February 2013, and February 2015 (Hasanzadeh Nafari et al., 2016a). 

During the flood event in January 2013, 200 businesses were inundated, and over 2000 

residents and 70 hospital patients were evacuated. Furthermore, the performance of 

lifelines was disrupted, and infrastructures were impacted (Queensland Government, 

2013). This flood event that occurred from 21–29 January 2013 was a result of the 

Tropical Cyclone Oswald, and the associated rainfall and flooding had a catastrophic 

effect on Queensland and it is considered to be the worst flood experienced in 

Bundaberg’s recorded history. The height of the floodwaters in Bundaberg city from 

Burnett River reached 9.53 metres at its peak, and over 2000 properties were affected 

(Hasanzadeh Nafari et al., 2016a). The extension of the water depth is illustrated in 

Figure 6-4. Bundaberg Regional Council estimated that the public infrastructure damage 

from the flood event of 2013 was approximately AUD 103 million (Hasanzadeh Nafari 

et al., 2016a). The second study area is the city of Roma, located on Bungil Creek, a 

tributary of the Condamine River in the Maranoa region in Queensland (Figure 6-5). 

The flood event in 2012 is considered to be the worst flood experienced in Roma’s 

history, having inundated 444 homes. This flood event that occurred from late January 

to early February 2012 was a result of heavy rainfall. The boundary of the flood is 

illustrated in Figure 6-6. The Maranoa Regional Council estimated that the public 

infrastructure damage from the natural disaster events of 2012 was approximately AUD 

50 million (Hasanzadeh Nafari et al., 2016a). The return periods of both flood events 

have been estimated to be approximately 100 years, based on the flood frequency 

analyses (North Burnett Regional Council, 2014). 

http://en.wikipedia.org/wiki/Bungil_Creek
http://en.wikipedia.org/wiki/Condamine_River


Chapter 6: An Assessment of the Effectiveness of Tree-based Models     

 

-154- 

 

 

Figure 6-1: Map of Bundaberg Regional Council (Queensland Government, 2011a) 

 

 

Figure 6-2: Bundaberg ground elevation (Bundaberg Regional Council, 2013a) 
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Figure 6-3: A part of the Burnett River catchment related to the area of the study (Bundaberg 

Regional Council, 2013b) 
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Figure 6-4: Inundation map of 2013 flood (Bundaberg Regional Council, 2013c) 
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Figure 6-5: Map of Maranoa Regional Council (Queensland Government, 2011b) 

 

Figure 6-6: Boundary of the 2012 historic flood event (Qld Department of Natural Resources and 

Mines, 2015) 
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The empirical dataset used for this study (457 loss cases from the 2013 flood and 150 

loss cases from the 2012 flood) was gathered after these two flood events from the 

Queensland Reconstruction Authority, a governmental responder organisation to 

Queensland disaster events. The official dataset—which was collected by either two or 

three post-disaster on-site surveys based on a standardised procedure and unified 

guidelines of the survey—provides data on the intensity of hazard (i.e. water depth, 

information on water contamination, and information on flow velocity), characteristics 

of buildings (i.e. material, floor space, construction type, number of building storeys, 

information on utilities and solar panels, and emergency measures undertaken), and the 

magnitude of losses. It is worth mentioning that for every building, the magnitude of 

damage has been explained based on the affected structural components. Accordingly, 

based on the average value of damaged items relative to the total value of the structure, 

the descriptions of damages have been exchanged into a percentage of damages 

(Hasanzadeh Nafari et al., 2016a). Further complementary data (e.g. building age, 

length of residency, average replacement building value, the number of residences, and 

socioeconomic status) was collected from the National Exposure Information System of 

Australia (Dunford et al., 2014). Consequently, the final dataset provides 20 attributes 

on 607 inundations. Candidate predictors are either extracted directly from one attribute 

(e.g. water depth or building area) or transformed from several attributes (e.g. building 

quality or flow velocity). Data preparation and data transformation are discussed further 

below. 

• Water depth and water contamination: this information was collected in two post-

disaster surveys. The value of water depth fluctuated between 0 cm and 700 cm 

above ground. However, for 96% of buildings, this attribute was equal to or less than 

350 cm. Also, the existence of sewage, biological, or chemical contamination has 

been checked and reported by visual inspection and smell. Accordingly, water 

contamination was ranked based on the reported material and the existing chemical 

hazards, from 0 (no contamination) to 2 (chemical contamination), with 1 

representing only sewage contamination. 
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• Flow velocity: flow velocity was assessed according to the comments of inspectors 

about the amount of water penetration inside of buildings, the volume of deposited 

materials, and the type of sediment next to the house (mud, sand, gravel or stone). 

Afterwards, this information was transformed and ranked as calm (1: no deposit or 

only mud sediment), medium (2: sand sediment or a considerable amount of water 

penetration), or high (3: gravel or stone sediment or high volume of deposits) flow 

velocity. 

• Emergency measures: the dataset provides information about whether or not people 

undertook any action against water infiltration, e.g. pumping water out or cut-off of 

electricity supply. Subsequently, these actions were ranked from 0 (no measure was 

undertaken) to 3 (many measures were undertaken), with 1 representing that only 

water was pumped out, and 2 representing that only electricity supply was cut off. 

The “cut-off of electricity supply” measure had a greater weight due to the high value 

of electrical equipment (Hasanzadeh Nafari et al., 2016a).  

• Precaution measures: the indicators of precaution measures were defined and ranked 

based on the construction type (3: high-set open under, 2: low-set with suspended 

floor, or 1: high-set enclosed under or slab on ground); protection of utilities and 

power system against water impacts (1: no protection, 2: protected); availability of 

solar-panel power provider (1: not available, 2: available); and the number of 

building storeys (1: one-storey buildings, 2: two-storey buildings). Eventually, 

precaution measure indicators were calculated and weighted by multiplying the above 

ranks.  

• Flood experience: the areas of study have experienced a variety of flood events in 

recent years (Hasanzadeh Nafari et al., 2016a; Honert and McAneney, 2011). 

Therefore, this parameter has been assessed and averaged according to the length of 

residency. Overall, about 11% of households moved into the areas one year or less 

before the events, weighted 1. About 31% of families settled there in the last five 

years, weighted as 2. Residents with more than five years length of residency were 

weighted 3. 
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• Building quality: this item is a function of age (i.e. constructed pre- or post- 1981) 

and material (e.g. timber, brick, concrete, or metal) of buildings. Age of buildings 

was weighted 1 if the structure was constructed pre-1981 and 2 if it was constructed 

post-1981. Also, the resistance of different materials against impacts of water is 

judged and ranked: 1 for timber, 2 for brick, and 3 for concrete or metal, according to 

the Australian building guidelines for flood prone areas (Hawkesbury-Nepean 

Floodplain Management Steering Committee, 2006). Finally, this candidate predictor 

is defined by multiplying the weight of age by the weight of the material. 

• The value and floor space of building: for every building, the value was calculated by 

multiplying the total area reported by the inspectors by the average replacement value 

per square metre extracted from the national exposure information system of 

Australia (Dunford et al., 2014). In this study, besides considering the area of the 

buildings, the contribution of the residents’ density with the extent of losses has been 

taken into account. Accordingly, floor space of the building was calculated per 

person, by dividing the total area by the number of residents. 

• Socioeconomic status: this category includes information about ownership status and 

monthly income (i.e. low: $1–$599, middle: $600–$1999, or high: greater than 

$2000). Also, it represents buildings whose residents need special attention (i.e. aged 

less than five or more than 65; needing assistance with a core activity; or do not 

speak English well) or low education residents (i.e. the highest educational attainment 

of all building residents is year 11 or below). 

Following the approach of Merz et al. (2013) and Chinh et al. (2015), these predictors 

were classified into five main categories: (1) flood impact; (2) emergency measures; (3) 

precaution and flood experience; (4) building characteristics; and (5) socioeconomic 

status (Table 6-1). Table 6-2 shows the Pearson correlation coefficient of the final 

candidate predictors and the loss ratio. As expected, and as other researchers have 

claimed (Hasanzadeh Nafari et al., 2016a; Merz et al., 2013; Thieken et al., 2005), water 

depth has the highest absolute correlation with loss ratios (Figure 6-7). However, many 

other variables—such as flow velocity, contamination, precaution measure, floor space 
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per person, the value of the affected building, and building quality—are also 

significantly correlated to damage ratio. 

Table 6-1: Description of the 13 candidate predictors (C: continuous, O: ordinal, N: nominal) 

Categories Predictors Type Range 

Flood impact 

WD Water depth C 
between 0 cm and 700 cm above 

ground 

Vel. Flow velocity O 1 = calm to 3 = high 

Con. Water Contamination O 
0 = no contamination to 2 = heavy 

contamination 

Emergency EM Emergency Measures O 
0 = no measure undertaken to 3 = 

many measures undertaken 

Precaution, 

experience 

PM Precaution Measures O 
1 = no measure undertaken to 4 = 

many measures undertaken 

Exp. Flood experience O 
1 = few flood experience to 3 = 

recent flood experience 

Building 

characteristic 

BQ Building quality O 1 = very bad to 6 = very good 

BV Building value C 1756 to 3594000 AUD 

FS 
Floor space per 

person 
C 13 to 870 m2 

Socioeconomic 

status 

SA 
Special attention 

resident 
N 0 = No, 1 = Yes 

Own. Ownership status N 0 = rent, 1 = own 

Inc. Monthly income O 
1 = $1–$599, 2 = $600–$1999, 3 = 

greater than $2000 

LE 
Low education 

residents 
N 0 = No, 1 = Yes 

 

Table 6-2: Pearson correlation of the 13 final candidate predictors (see Table 6-1) and loss ratio. 

Significant correlations (5% significance level) are marked bold 

Pearson Correlation Coefficient 

 WD Vel. Con. EM PM Exp. BQ BV FS SA Own. Inc. LE 

Loss 

Ratio 
0.62 0.23 0.19 −0.05 −0.16 −0.03 −0.07 −0.14 −0.15 0.04 −0.03 −0.04 0.02 
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Figure 6-7: Scatter plot showing the relation between loss ratio and water depth (structural loss 

ratio does not cover the damages of mobile contents, and it is only limited to all building fabrics 

including stationary interiors) 

6.4 Statistical Methods 

Regression trees and bagging decision trees were applied to determine the prominent 

damage-influencing parameters, to understand their effect on the extent of structural 

damage, and to compare the performance of the tree-based models with an established 

flood loss function. The tree-based analyses were performed with the Weka machine 

learning software (Kalmegh, 2015). 

6.4.1 Regression Trees 

Regression trees are machine learning methods for constructing prediction models 

from data where the target variables are continuous values (Loh, 2011). Tree-based 

regression models are known for their simplicity and efficiency when facing up to 

domains with a large number of variables and data (Buja and Lee, 2001). They are 

constructed by sub-dividing the predictor data space into smaller areas such that in each 

split, the dataset is partitioned into two sub-spaces. In this regard, each terminal node is 

labelled with a question and the binary branches are labelled with the answers. 
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Subdivision should be performed in such a way that the predictive accuracy is 

maximised, and errors are minimised. In other words, the algorithm searches over all 

possible split values of all predictor variables to identify the split which minimises an 

error criterion. Overall, trees should be complicated enough to take advantage of 

information that increases predictive power, while simple enough to ignore random 

noises that do not enhance the accuracy of results (Merz et al., 2013).  

If a decision tree model is fully grown, it may lose some generalisation capability, 

and if the training data contains any errors, it can lead to poor performance on 

unforeseen cases. This issue is known as overfitting and needs careful attention 

(Breiman et al., 1984; Pal and Mather, 2003). One way to avoid overfitting is tree 

pruning, which was employed in this study. Tree pruning is a technique in machine 

learning that decreases the size of decision trees by taking off sections of the tree that 

give little power to classify instances. Pruning reduces the complexity of the final 

classifier and hence improves predictive accuracy by the reduction of overfitting 

(Bramer, 2007). 

In this study, the target variables were relative structural loss values and trees were 

constructed using the entire dataset. Therefore, some repeated binary partitioning 

questions construct the structure of the tree, from the root node to the terminal nodes (or 

leaves). Terminal node values give the average loss ratio of all data values of the 

terminal node (Merz et al., 2013). In other words, the prediction of loss ratio is the 

average of the training dataset that belongs to every leaf.  

The prediction error used for Figure 6-8 is estimated by a 10-fold cross-validation 

technique based on the average absolute deviation of the estimated ratios from the 

observed values (MAE). In this regard, the shuffled data was first partitioned into 10 

equally-sized segments (folds). A tree was computed 10 times. In each iteration, a 

different fold of the data was held out for model testing while the remaining nine folds 

were used for model training. Eventually, the error was averaged over all constructed 

models (Hasanzadeh Nafari et al., 2016b; Refaeilzadeh et al., 2009). 
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6.4.2 Bagging Decision Trees 

The bagging predictor is a method for generating a multiple version of a predictor and 

using this to get an aggregated predictor. The multiple version is formed by making 

bootstrap replicates of the entire dataset and using each replica to grow a new regression 

tree. The response of a bagging decision tree is the average of all individual regression 

trees. Bootstrapping and ensemble models make the response strong enough to cope 

with variation in data and avoid the overfitting issue. Tests on real and simulated 

datasets using regression trees have shown that compared to an individual regression 

tree, bagging can substantially enhance the stability and accuracy of the model’s 

performance (Breiman, 2001, 1996; Elghazel and Aussem, 2013; Machová et al., 2006; 

Merz et al., 2013). About one-third of data is not used for training the individual 

regression trees. This segment, called out-of-bag data, is the observation data utilised 

for error estimation and feature importance assessment.  

The quality of a bagging tree, used for exploring the feature importance, is measured 

by the average error of predictions of all regression trees compared with the observation 

data (out-of-bag data). In this regard, the values of one variable in the out-of-bag 

examples is randomly permuted, and the increase in the out-of-bag error is measured: 

the greater the growth, the more important the feature (Breiman, 2001; Chinh et al., 

2015; Merz et al., 2013). 

6.4.3 Comparing the Performance of the Tree-Based Models with FLFArs 

The tree-based models constructed in the previous stages, based the on the entire 

dataset, were utilised for loss ratio estimation and comparison with the stage-damage 

function. For a meaningful comparison, all models should be derived from the same 

dataset (Merz et al., 2013). Accordingly, the performance of the tree-based model was 

compared with a newly established multi-parameter flood loss model (FLFArs) 

(Hasanzadeh Nafari et al., 2016a), which has been derived from the same flood event 

data. 
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The results of the damage models have been compared with the following resampling 

procedure. First, 100 samples are randomly pulled out from the original data set, and 

each model is implemented with this random sample. Errors in the estimates from the 

aforementioned models in contrast to the actual values are evaluated by three error 

measures: mean absolute error (MAE), root mean square error (RMSE), and correlation 

coefficient. Then, this step is repeated 200 times and the average of errors converged to 

a final constant value. Finally, the performance of the damage models is compared 

according to the converged values of the averaged errors (Figure 6-11). 

6.5 Results and Discussion 

6.5.1 Importance and Interaction of the Damage Influencing Parameters 

Regression Trees 

Regression trees were created in different sizes. Figure 6-8 compares the various trees 

based on the cost error parameter. The largest tree was stopped with 19 terminal nodes 

(Figure 6-9). As stated before, trees should be complicated enough to take advantage of 

information that increases predictive power, while simple enough to ignore random 

noises that do not enhance the accuracy of results (Merz et al., 2013). Accordingly, after 

using tree pruning technique for all sizes of regression trees, the tree with 19 terminal 

nodes and a minimum value of error (0.0652) was selected. In this tree, five predictors 

out of the 13 candidates were considered and correlated with loss ratios. Table 6-3 

shows how many times these predictors were used in decision nodes and how these 

parameters are correlated with loss ratios. A positive correlation means that the loss 

ratio increases or decreases as the candidate predictor increases or decreases, and the 

reverse for a negative correlation. 
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Figure 6-8: Comparison of various pruned regression-trees, based on the mean absolute error 

(MAE) calculated by a 10-fold cross-validation technique 

 

 

Figure 6-9: Regression tree with 19 leaves for estimating the structural loss ratios (WD: water 

depth, FS: floor space, PM: precaution measures, BV: building value, BQ: building quality) 
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Table 6-3: Damage-influencing variables of regression tree with 19 leaves 

Candidate Predictors No. of Decision Nodes Correlation with Loss Ratio 

Water depth 9 + 

Floor space 3 − 

Precaution measures 2 − 

Building value 3 N.A. 

Building quality 1 − 

 

Water depth is the most significant predictor, available in nine decision nodes and 

correlating positively with the loss ratio. This outcome is as expected, and accords with 

previous research (Merz et al., 2010; Penning-Rowsell and Green, 2000). After water 

depth, floor area (space area per person) is the most important influencing factor, 

correlating negatively with loss ratio. The space area might be substantial if the depth of 

water is greater than 64 cm. This result accords with the findings of Thieken et al. 

(2005) and Merz et al. (2013), who showed that the building loss ratio decreases if the 

total floor space of the building exceeds 139 m2 or 120 m2 (Merz et al., 2013; Thieken 

et al., 2005). However, in this study, the area of the building reduces the extent of losses 

if it exceeds 150 m2 per person (Figure 6-9).  

Another important factor that correlates negatively with the extent of losses is the 

precautionary measures. In the pruned tree with 19 leaves, the precautionary measures 

are important only for larger water depths (>177.5 cm). This outcome is opposite to the 

results of the studies in Germany, where the effects of the precautionary measures were 

significant only for shallow water depths (Kreibich et al., 2005; Merz et al., 2013). This 

matter can be explained according to the flood characteristics and the precaution 

measures considered. As stated, in this study, water depth was the most significant 

impact factor. On the other hand, the construction type (i.e. how much the first floor has 

been raised up) and the number of building storeys had the most influential effects on 

the weighting of the precautionary measures. Accordingly, when the flood depth is 

shallow, and hazard has little impact, these measurements do not significantly affect the 

calculated extent of losses. However, when the impact of the flood (water depth) is 

considerable, precautionary measures—either by substantially decreasing the water 
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depth on the floor of the building, or by protecting the building fabrics placed at higher 

levels—will remarkably reduce the extent of losses.  

As with precautionary measures, building quality has an inverse effect on the 

structural loss ratios if the water depth is greater than 177.5 cm. This accords with the 

above finding that water depth is the greatest influencing factor of the floods, and the 

resistance parameters are meaningful if the depth of water (hazard impact) is significant. 

The building value indicator was also presented in three decision nodes of the right part 

of the tree. Nonetheless, its correlation with the loss ratio is not clear. In other words, on 

this dataset and in large flood depths, variation in the building value does not have a 

defined relationship with the trend of the loss ratio. This can be interpreted as a weak 

local correlation between this predictor and the loss ratio, or as an inherent uncertainty 

in the data.  

Water contamination and flow velocity were not found to correlate with the loss 

ratios. This result confirms the outcome of Kreibich et al. (2009) and Merz et al. (2013), 

who showed that the effects of the flow velocity and the water contamination are 

significant only if the depth of water is shallow and the level of energy head is low 

(Kreibich et al., 2009; Merz et al., 2013). Since in this study these predictors are 

reported simultaneously with large flood depths, they do not have a major effect on the 

extent of the damage. Other defined indicators such as emergency measures, flood 

experience, and socioeconomic status do not have an evident meaningful relationship 

with the loss ratios, although these parameters (e.g. water contamination, flow velocity 

and socioeconomic status) might be related to the loss ratios if an unpruned tree was 

grown on the dataset. As stated, although unpruned trees might have better performance 

on the original data, overfitting phenomena could affect their performance for an 

independent dataset. Accordingly, the authors have not developed unpruned trees for 

this part of the study. Furthermore, due to the joint effects of parameters, the interaction 

of emergency measures should also be discussed in the context of warnings and alerts 

issued during the event. 
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Bagging Decision Trees 

As mentioned earlier, the bagging decision tree is formed by making bootstrap 

replicates of the entire dataset and using each replica for growing a new regression tree. 

This step was completed up to 200 times until the average of the ensemble errors 

became stable. Afterwards, the feature importance and the ranking of the predictors 

were calculated based on the results achieved from random permute. The grading of the 

predictors is water depth, space area per person, precautionary measures, building value, 

building quality and flow velocity (Figure 6-10). Other candidates show slight feature 

importance. This ranking is very similar to the results obtained from the regression 

trees, see Table 6-3. 

 

Figure 6-10: Out-of-bag feature importance for bagging decision trees 

 

Performance of the Applied Damage Models 

In this part of the study, the performance of the tree-based models was compared with 

FLFArs multi-parameter flood loss function. As mentioned before, both approaches (the 

tree-based models and the stage-damage function) were derived based on the same 

dataset.  
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To compare the performance of the tree-based models with FLFArs, 200 sets of 100 

affected buildings were randomly drawn from the original dataset; each model was 

applied to every building record and the errors were calculated and averaged over all 

samples.  

Results show that there is a distinct improvement in the tree-based models’ 

performance over the FLFArs model, which is due to the consideration of more 

candidate predictors. Also, there is a small improvement in the fulfilment of the bagging 

decision tree compared to the regression tree. The metrics are the higher value of the 

correlation coefficients, the lower value of the errors, and the lower variation of the 

results. This improvement is due to the reduction in the variances of the dataset and the 

greater accuracy of the model (Figure 6-11). In Figure 6-11, MAE represents the 

average absolute deviation of the estimated ratios from the observed values and is a 

quantity used to measure how close the estimates are to the empirical data. The RMSE 

also expresses the variation of the estimated ratios from the observed ratios. It signifies 

the standard deviation of the differences between the modelled values and observed 

values (Chai and Draxler, 2014; Seifert et al., 2010). 
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Figure 6-11: Comparison of the flood damage estimation models (FLFArs: Australian stage-

damage function, RT: regression tree, BT: bagging decision trees). Bar graphs represent the 

converged average values of the results, calculated over 200 sets of data samples, and the error bars 

show the spread of the results 

6.6 Conclusions 

Flood damage assessment is an important component of flood risk management since 

inaccurate damage estimation leads to wasted effort, money, and resources for the 

organisations involved in risk mitigation. The majority of flood damage models have 
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attempted to propose simplified approaches based on the type or use of elements at risk 

and the inundation depth of water. However, flood damage is a complicated process, 

dependent on a variety of factors. Accordingly, the traditional stage-damage functions 

are subject to significant uncertainties since some influencing factors are usually 

neglected. If the water depth is the only hydraulic factor considered, the models are not 

flexible enough to transfer and use in a new area of study. On the other hand, multi-

variable models are also subject to uncertainty, particularly since additional variables 

are taken into account. Therefore, they also entail additional sources of uncertainty. This 

study used a multi-variate statistical analysis to explore the interaction and effect of 

many influencing parameters on the extent of flood losses. In this regard, tree-based 

approaches (e.g. regression trees and bagging decision trees) have been applied, and a 

dataset collected from 2012 and 2013 flood events in Queensland has been utilised. 

Previous studies have shown that tree-based models are very effective in identifying the 

significant damage-influencing parameters and their interactions with the extent of 

losses since they can extract the local relevance of every predictor. Accordingly, this 

study has taken advantage of this approach.  

The results of the Australian dataset show that water depth is the most significant 

predictor, correlating positively with the loss ratio. After water depth, floor space per 

person is the most important influencing factor, correlating negatively with loss ratio. 

This predictor is substantial if the depth of water is greater than 64 cm and the area of 

the building exceeds 150 m2 per person. Another important factor that correlates 

negatively with the extent of losses is the precautionary measures. The precautionary 

measures are important only for large flood depths (>177.5 cm). This outcome is 

opposite to the results of the studies in Germany, where the effects of the precautionary 

measures were significant only for shallow water depths. As with precautionary 

measures, building quality has an inverse effect on the structural loss ratios if the water 

depth is greater than 177.5 cm. The building value indicator was also presented in three 

decision nodes of the tree. However, its correlation with the loss ratio is not specified. 

In this study area, water contamination and flow velocity were not correlated with the 

loss ratios. Also, it has been shown that socioeconomic status does not play a 



Chapter 6: An Assessment of the Effectiveness of Tree-based Models     

 

-173- 

 

fundamental role in flood loss mitigation in the areas of study. As the results of the tree-

based approaches show, the following damage-influencing parameters are important: 

water depth, floor space per person, precautionary measures, building value, and 

building quality. The high importance of water depth is in accordance with traditional 

stage-damage functions. However, to the best of our knowledge, the influences of other 

parameters have not been studied comprehensively for flood damage assessment in 

Australia. 

Finally, the performance of the tree-based models was compared with the outcomes 

of a newly established multi-parameter flood loss function (FLFArs) from Australia. It is 

demonstrated that the new tree-based model, due to considering more parameters, can 

estimate the extent of losses more accurately. The evaluation of model performance in 

this chapter is based on random samples which are not independent of the data used for 

model development. Hence, the comparison of model performance does not give 

information about the transferability of the models.  

Accordingly, it is recommended that further development of Australian flood damage 

models consider more candidate predictors (especially the important parameters stated 

in this study), and take advantage of tree-based models. Further research will be aimed 

at examining a more comprehensive dataset to explore the significance of other 

influencing factors (e.g. return period, long duration flooding, sediment loading, and 

early warning) and using an independent dataset to evaluate the level of transferability 

of the tree-based models in time and space. 
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7 PREDICTIVE APPLICATIONS 

OF AUSTRALIAN FLOOD LOSS 

MODELS AFTER A TEMPORAL 

AND SPATIAL TRANSFER [Submitted 

Chapter] 5 

 

 

 

7.1 Abstract 

In recent decades, considerably greater flood losses have increased attention to flood 

risk evaluation. This study used datasets collected from Queensland flood events and 

investigated the predictive capacity of three new Australian flood loss models to assess 

the extent of physical damages, after a temporal and spatial transfer. The models’ 

predictive power is tested for precision, variation, and reliability. The performance of a 

new Australian flood loss function (FLFArs) was contrasted with two tree-based 

damage models, one pruned and one un-pruned. The tree-based models are grown based 

on the interaction of flood loss ratio with 13 examined predictors gathered from flood 

                                                 

5 Hasanzadeh Nafari, R. and Ngo, T., 2018. Predictive applications of Australian flood loss models after a 

temporal and spatial transfer, Geomatics, Natural Hazards and Risk, 9:1, 416-430. 
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specifications, building characteristics, and mitigation actions. Besides an overall 

comparison, the prediction capacity is also checked for some sub-classes of water depth 

and some groups of building type. 

It has been shown that considering more details of the flood damage process can 

improve the predictive capacity of damage prediction models. In this regard, complexity 

with parameters with low predictive power may lead to more uncertain results. On the 

other hand, it has also been demonstrated that the probability analysis approach can 

make damage models more reliable when they are subjected to use in different flooding 

events. 

7.2 Introduction 

Flood is a common natural disaster in Australia, and a frequently occurring natural 

phenomenon in the world (Baeck et al., 2014; Bhatt et al., 2016; Hasanzadeh Nafari et 

al., 2015). In recent decades, flood impacts have increased (Cheng and Thompson, 

2016; Kreibich et al., 2007; McMillan et al., 2016; Mojaddadi et al., 2017), reaching 

29% of the total cost of Australian natural disasters (Bureau of Transport Economics, 

2001). Hence, flood risk evaluation including hazard assessment and estimation of the 

associated consequences (Ciullo et al., 2016; Vojtek and Vojteková, 2016) has attracted 

growing attention (Cammerer et al., 2013; Kundzewicz et al., 2013; Merz et al., 2010; 

Raaijmakers et al., 2008). While much effort has gone into hazard investigation, i.e. 

models of probability and intensity of flood, flood loss estimation models are still 

subject to a high level of uncertainty (Kreibich and Thieken, 2008; Merz et al., 2004; 

Meyer et al., 2013). Loss estimation is needed in cost-benefit analyses of disaster risk 

reduction measures (Mechler, 2016), vulnerability and resilience studies, flood risk 

analyses, and in the insurance and reinsurance sectors (de Moel and Aerts, 2011; 

Schröter et al., 2014). 

Flood impact can be classified as direct or indirect damage (Molinari et al., 2014; 

Thieken et al., 2005). Direct losses happen in the flood boundary and due to the 

physical impacts of water on flooded objects (e.g. humans, properties, building contents 
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or any other objects), while indirect flood damages could occur outside the flooded area 

or after inundation time (Chen et al., 2016; Novelo-Casanova and Rodríguez-Vangort, 

2016). Both direct and indirect losses can be categorised as tangible or intangible 

consequences (Gissing and Blong, 2004; Thieken et al., 2005). Tangible losses can be 

estimated in fiscal terms, but intangible losses are non-marketable (Chinh et al., 2015). 

The focus of this study is to physical, tangible impacts of flood and the spatial scale is 

on the order of individual residential buildings.  

Although there is currently no widely accepted method for estimating flood damage 

in urban areas, most approaches rely on stage-damage functions for simplicity (Luino et 

al., 2009; Merz et al., 2010; Meyer et al., 2013). Stage-damage functions, which date 

back to White (1945) (White, 1945) are usually based on the level of the water and 

vulnerability of the buildings at risk (Schröter et al., 2014; Thywissen, 2006). The 

functions establish a relation between the level of water (i.e. flood magnitude) and the 

expected damages for specific building vulnerability classes (Dewals et al., 2008; 

Jongman et al., 2012; Thieken et al., 2006). Nonetheless, there are some exceptions 

which account for further impact parameters such as flow velocity, water 

contamination, duration of inundation, individual precautionary behaviour, or early 

warning time (Cammerer et al., 2013; Hasanzadeh Nafari et al., 2016c; Merz et al., 

2013). Stage-damage functions can be derived based on real damage data (i.e. empirical 

curves), or they can be developed by “what-if” questions (i.e. synthetic curves) (Amadio 

et al., 2016; Smith, 1994). Each approach has some advantages and disadvantages 

(Merz et al., 2010). Flood loss functions can also be grouped as absolute or relative. The 

absolute type expresses the extent of losses in fiscal terms, while relative functions 

show the magnitude of damages as a ratio of the asset price, i.e. replacement or 

depreciated cost of the property, and are independent of market variations (Kreibich et 

al., 2010).  

On the other hand, flood damage might be controlled by a variety of influencing 

parameters rather than the ones considered in stage-damage functions (Schröter et al., 

2014). Merz et al. (2013) have classified these parameters into flood intensity factors 



Chapter 7: Predictive Applications of Australian Flood Loss Models  

 

-183- 

 

including depth of water, flow velocity, return period, duration, and contamination of 

water; and building flood-resistant indicators including material and characteristics of 

property, individual precaution and emergency actions, early warning time and 

preparedness, former flood experience of residents, and residents’ socioeconomic 

situations (Merz et al., 2013). Accordingly, data mining techniques, as effective 

alternatives to traditional stage-damage functions, have recently been used for exploring 

the interaction and the importance of different damage-influencing parameters in 

Germany, the Mekong Delta, and Australia (Chinh et al., 2015; Hasanzadeh Nafari et 

al., 2016c; Kreibich et al., 2016; Merz et al., 2013). These studies are showing that the 

impacts of different affecting factors can be studied effectively with the tree-based data 

mining technique, which is mostly utilised in water resource studies and hydrology 

science, but rarely in flood-loss modelling (Merz et al., 2013). 

Flood loss models (whether stage-damage functions or tree-based models) are sharply 

restricted to the features of the area of origin (i.e. flood features and building 

characteristics) (Hasanzadeh Nafari et al., 2016a). Thus, transferring the damage models 

to a new study area and/or a new flood event does not result in an accurate relationship 

between the extent of damages and the impacts of flood, unless the models have been 

calibrated with an empirical dataset collected from the new case study (Cammerer et al., 

2013; Luino et al., 2009; Oliveri and Santoro, 2000). This loss of accuracy naturally 

reduces predictive capacity (Schröter et al., 2014). On the other hand, the largest effect 

on loss estimation is induced by the shape of the applied damage models, while 

precision in collecting hydraulic input and flood characteristics is of minor importance 

(Apel et al., 2009; de Moel and Aerts, 2011). Therefore, validation of flood loss models 

is one important step in model development (Cammerer et al., 2013; Schröter et al., 

2014). However, due to a lack of historical data, little research has been done on the 

validation of models, especially when they are subjected to a temporal and/or spatial 

transfer (Merz et al., 2010; Meyer et al., 2013; Seifert et al., 2010; Thieken et al., 2008), 

and Australia is no exception.   
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This study, therefore, attempts to explore the predictive performance of three newly 

derived Australian flood loss models, one stage-damage function and two tree-based 

models, after a temporal and spatial transfer. Firstly, all three models are developed and 

calibrated based on the empirical dataset collected from one flood event that occurred in 

Queensland at the beginning of 2013. Afterwards, their predictive capacity is compared 

and contrasted with the official damage data of the 2012 flood event. The models’ 

predictive power is tested regarding precision, variation, and reliability of the results. 

The prediction capacity is also checked for some sub-classes of water depth and some 

groups of building type.      

7.3 Flood Events and Damage Data  

7.3.1 Study Area and Flood Event in 2013 

The study area of the 2013 flood event is the city of Bundaberg, on the Burnett River 

in south-east Queensland. Due to its geographical characteristics (e.g. location and 

ground elevation), shown in Figure 7-1, this city has seen several flood disasters in 

recent years. One of the most significant happened in January 2013 (Hasanzadeh Nafari 

et al., 2016b). The flood happened after Tropical Cyclone Oswald and its associated 

rainfall (Alamdar et al., 2016). The flood had significant negative consequences on 

Bundaberg’s economy as more than 2000 buildings were impacted, and damage to 

public infrastructure was estimated around AUD103 million (Hasanzadeh Nafari et al., 

2016a). The maximum level of flood water was recorded as 9.53 metres and its return 

period was estimated as 100 years (North Burnett Regional Council, 2014). An 

empirical dataset including information on the hazard intensity, the vulnerability of 

buildings and the associated damages used for the models’ development was collected 

after this flood event.  
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Figure 7-1: Topographic map of Bundaberg (Bundaberg Regional Council, 2013) 

 

7.3.2 Study Area and Flood Event in 2012 

The second area of study is the city of Roma, and the dataset used for the cross-

regional and temporal model validation was collected from a flood event that occurred 

there in February 2012. The city of Roma is in the Maranoa region in Queensland, on 

the Condamine River. The flood event, which happened due to an intense rainfall, 

damaged more than 444 residential properties. It was a rare disaster in Roma’s 149-year 

history and its return period was estimated as 100 years (North Burnett Regional 

Council, 2014). The inundation boundary is shown in Figure 7-2. 

 

http://en.wikipedia.org/wiki/Condamine_River
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Figure 7-2: Flood inundation boundary in the area of the study after the 2012 inundation event 

(Qld Department of Natural Resources and Mines, 2015) 

 

7.3.3 Empirical Damage Data Collection 

Queensland Reconstruction, as a government authority for responding to Queensland 

natural disasters, has collected and provided the dataset used in this research including 

250 data samples from the 2012 flood and 607 samples from the 2013 flood. The 

official dataset, which was compiled from post-disaster on-site surveys, includes 

information on flood impacts (e.g. depth, velocity, contamination), specifications of the 

affected buildings (type of building and number of storeys, construction material, area 

of the building, protection of mechanical and electrical utilities, and emergency 

measures undertaken), and the extent of losses. The empirical dataset expresses the 

magnitude of losses by illustrating the status of all structural components in post-

disaster time (i.e. which components are undamaged and which ones are partially or 
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entirely damaged). Accordingly, the damage ratio was calculated by dividing the 

replacement cost of the affected components by the total replacement cost of the 

property (Hasanzadeh Nafari et al., 2016a). More data about the affected buildings (e.g. 

age and total replacement value) and the status of their residents was gathered from the 

NEXIS (the National Exposure Information System of Australia) database (Dunford et 

al., 2014). 

7.4 Damage Models 

In this study, the performance of three newly established Australian models, different 

in approach and complexity, was compared and contrasted with real system data. All 

models were calibrated and developed based on the same dataset gathered from the 

2013 flood event in Queensland. After a spatial and temporal transfer, their predictive 

capacity was assessed in comparison to the 2012 damage data.     

7.4.1 FLFArs 

The Flood Loss Function for Australian residential structures (FLFArs) is newly 

developed by Hasanzadeh Nafari et al. (2016b) (Hasanzadeh Nafari et al., 2016b). The 

FLFArs is an empirical-synthetic model, meaning that this model was initially developed 

using a simplified synthetic approach called the sub-assembly method, developed by the 

HAZUS manual (FEMA, 2012). Then, the synthetic curves were calibrated using the 

data of the 2013 flood event in Queensland. To be more precise, this model takes the 

empirical data of damage and depth, stratified by building classifications, and uses the 

chi-square test of goodness of fit to fit a parameterised function to compute depth-

damage estimates.  

The chapter has illustrated a bootstrapping approach to assist in exploring the 

inherent uncertainty of the empirical data and the associated confidence limits around 

parameters of the stage-damage function. For every building (i.e. one- and two-storey 

buildings with masonry and timber walls) three stage-damage functions (i.e. most 

likely, maximum, and minimum damage functions) are depicted. In more detail, for 

each type of building, using a bootstrapping approach and the chi-square test, 
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resampling of the related empirical loss values was carried out for 1,000 times, and 

1,000 sets of functional parameters were generated. Afterwards, the average of the 

1,000 sets of functional parameters was converged to the values considered for the most 

likely curve which produces the smallest error. The function that maximises the depth 

damage relationship was taken as a maximum curve, and the observation that created 

the minimum depth damage relationship was taken as the minimum curve (see Figs. 7-

3, and 7-4). As mentioned, the range of estimates represents the epistemic uncertainty of 

the empirical dataset (Hasanzadeh Nafari et al., 2016b). 

The advantages of this approach compared to most Australian synthetic models 

include the ability to utilise empirical data; considering the epistemic uncertainty about 

the depth damage relationship and representing robust damage curves; and capacity to 

easily change functional parameters based on different characteristics of Australian 

buildings. The stage-damage functions utilised in this study for one-storey buildings 

with timber walls and two-storey buildings with brick walls are the most likely curves 

shown in Figs. 7-3 and 7-4. 

 

Figure 7-3: Minimum, most likely and maximum FLFArs stage-damage functions for one-storey 

buildings with timber walls (Hasanzadeh Nafari et al., 2016b) 
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Figure 7-4: Minimum, most likely and maximum FLFArs stage-damage functions for  two-storey 

buildings with timber walls (Hasanzadeh Nafari et al., 2016b) 

 

Figure 7-5: Minimum, most likely and maximum FLFArs stage-damage functions for 

one-storey buildings with brick walls (Hasanzadeh Nafari et al., 2016b) 
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Figure 7-6: Minimum, most likely and maximum FLFArs stage-damage functions for two-storey 

buildings with brick walls (Hasanzadeh Nafari et al., 2016b) 

 

7.4.2 Regression Trees 

Regression trees were drawn based on the approach of Hasanzadeh Nafari et al. 

(2016c). Compared to the outcomes of that study, the model has been redeveloped, and 

its shape has been adapted based on the data from the 2013 flooding event. Data 

preparation and ranking of the examined predictors are described in Hasanzadeh Nafari 

et al. (2016c) (Hasanzadeh Nafari et al., 2016c). The 13 candidate predictors considered 

for data mining are classified and represented in Table 7-1. 
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Table 7-1: Explanation of the examined predictors considered for data mining (Character of 

Variables: Co: continuous, No: nominal, Or: ordinal) (Hasanzadeh Nafari et al., 2016c) 

Divisions Examined Predictors 
Variables 

Character  
Variation 

Hazard intensity 

WD Depth Co 
between 0 cm and 680 cm 

above ground elevation 

Vel. Velocity Or 1 = calm to 3 = high 

Con. Contamination Or 
0 = no contamination to 2 = 

massive contamination 

Emergency 

measures 
EM Emergency actions Or 

0 = no action to 3 = many 

actions  

Precaution, 

experience 

PM Precaution actions Or 
1 = no action undertaken to 

4 = many actions undertaken 

Exp. Former flood experience Or 
1 = few experience to 3 = 

many experience 

Building 

specifications 

BQ Quality of property Or 
1 = very poor to 6 = well-

behaved 

BV Value of property Co 1756 to 3594000 AUD 

FS Floor space per person Co 13 to 870 m2 

Residents 

socioeconomic 

situation 

RA Residents need assistance No 0 = don’t need, 1 = need 

Own. Ownership status No 0 = renter, 1 = owner 

Inc. Monthly income Or 
1 = $1–$600, 2 = $601–

$2000, 3 = more than $2000 

LE Low education residents No 0 = No, 1 = Yes 

 

Data mining was carried out using tree-based analysis and Weka machine learning 

software algorithms (Kalmegh, 2015). Branches were generated in a way which 

maximises the predictive capacity of the model, and prediction of damage ratio in every 

terminal node was carried out based on the average value of all loss ratios dedicated to 

the node (Kreibich et al., 2016). In the tree-based analysis, the overfitting issue needs 

careful attention (Merz et al., 2013). This issue can affect the prediction capability of a 

model if it is fully developed on one dataset (Breiman et al., 1984; Pal and Mather, 

2003). Then, trees should not be made complicated by branches which do not enhance 
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the prediction capability of models. Tree pruning is one way to avoid this issue. This 

technique works by eliminating the parts of the tree that do not improve the accuracy of 

results (Bramer, 2007). In other hand, trees should not be too simple, and they should 

take advantage of branches that could enhance the predictive capability of the model 

(Merz et al., 2013). 

Accordingly, in this study, to choose the most accurate model with a better predictive 

capacity taking into account the spatial and temporal transfer, two trees (i.e. one pruned, 

with 12 terminal nodes, and one un-pruned, with 21 terminal nodes) were grown and 

utilised (see Figs. 7-5 and 7-6). These sizes were selected due to the minimum value of 

the error (MAE) calculated by a 10-fold cross-validation test on the original dataset (i.e. 

the 2013 flood event data). For the error calculation, the damage records were randomly 

partitioned into ten subsets. Then, ten iterations of model calibration and model testing 

were carried out. In each iteration, the model was calibrated using nine subsets of the 

data, while the picked-out subset was kept for the model testing. In the end, errors were 

calculated by averaging over all ten iterations (Refaeilzadeh et al., 2009). 

 

Figure 7-7: Pruned tree (RTp) with 12 leaves (for the description of the examined predictors, see 

Table 7-1) 
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Figure 7-8: Unpruned tree (RTup) with 21 leaves (for the description of the examined predictors, 

see Table 7-1) 

As shown in Fig. 7-5, flood depth, precaution actions, floor space, and quality of 

property by having, respectively, five, three, two, and one decision nodes are the 

influencing variables of the pruned regression tree. Also, Fig. 7-6 represents the 

importance of building value, water depth, floor area, quality of property and precaution 

actions in the unpruned model by taking six, five, three, three, and three decision nodes, 

respectively. As is evident, the advantage of the tree-based model can be addressed to 

the ability to consider more damage-influencing parameters, while it does not reflect the 

inherent uncertainty of the dataset. 

7.5 Validation of the models  

As stated earlier, model validation is a major step in model development, but due to a 

lack of historical data, has been widely neglected. Model validation should represent the 

intended purpose of the model and may represent the replicative application or the 

predictive application of a damage model. The replicative validation approach, which 
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was used by Hasanzadeh Nafari et al. (2016c) (Hasanzadeh Nafari et al., 2016c), refers 

to the performance of the model on a dataset which has been used in model 

development. The predictive validation process assesses the model’s capability of 

predicting an independent dataset (Power, 1993; Schröter et al., 2014). The focus of this 

work is on the predictive validation approach after a spatial and temporal transfer, and 

the authors have attempted to explore the suitability of the models as compared to real 

system data.  

To test the predictive capability of the models, 200 sets of 250 affected buildings 

were randomly drawn from the original dataset; each model was applied to every 

building record and results were calculated and averaged over all samples. Following 

the approach of Schröter et al. (Schröter et al., 2014), the models’ predictive capacity 

was tested for the precision of the outcomes, variation of the residuals, and reliability of 

the results. Accordingly, precision was tested by MBE and MAE. The MBE as the 

overall bias error is negative if predicted damage values are smaller than actual loss 

records, and it is positive if an overestimation has occurred in prediction. Also, MAE 

represents that how much predictions are adjacent to real damage data (Chai and 

Draxler, 2014). Residuals variation has been checked by the Coefficient of Variation 

(CV) measurement, which represents the extent of variability in relation to the mean of 

the population. A smaller CV shows a lower spread of prediction errors (Hasanzadeh 

Nafari et al., 2015). The models’ reliability has been examined using the Hit Rate (HR) 

value, which illustrates the percentage of damage records that included in the 90 percent 

range (i.e. 95-5 quantiles interval) of predicted values (Schröter et al., 2014). This 

quantile interval represents the nominal coverage rate of 90 percent of model outcomes. 

Accordingly, the model performance shows a perfect reliability if the HR is equal to 

0.9, i.e. the nominal coverage rate of 90 percent of model outcomes is equal to the 

coverage rate of actual damage records (Schröter et al., 2014; Thordarson et al., 2012). 

The models’ evaluation criteria are calculated as follows: 
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Table 7-2: Model evaluation criteria ( ie  is deviation of the estimated values from real damage 

data;    and    are the standard deviation and the mean value of the model residuals) 

Criterion Formula LB1 UB1 PP1 

MAE 
=

n

i

ie
n 1

1

 

0 +inf 0 

MBE 
=

n

i

ie
n 1

1

 

-inf +inf 0 

CV 




 

0 +inf 0 

HR 
 







 

=
= otherwise

QQOif
hh

n

iii

i

n

i

i
,0

,,1
;

1 0595

1  

0 1 0.9 

1LB: Lower Bound, UB: Upper Bound, PP: Perfect Prediction 

7.6 Results and Discussion 

The accuracy of the results and the validation of the models’ performance was tested 

three times. Firstly, the overall performance of the aforementioned models, calibrated 

with the 2013 data, was tested for predicting the extent of losses of the 2012 flood 

event. Afterwards, the water depth “d” was divided into six different groups (d<20 cm, 

20<d<40 cm, 41<d<60 cm, 61<d<80 cm, 81<d<100 cm, d>101 cm), and the models’ 

outcomes were contrasted with the corresponding damage data. Finally, the buildings 

were grouped into four classes (one-storey timber buildings, two-storey timber 

buildings, one-storey masonry buildings, and two-storey masonry buildings) and the 

evaluation was repeated. Table 7-3 represents the results of the overall comparison, 

which are calculated by averaging over all sample outcomes. 
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Table 7-3: Comparison of the models’ predictive capacity for the flood event of February 2012 (RTp 

is the pruned regression tree, and RTup is the un-pruned regression tree) 

Methods MAE MBE CV HR 

FLFArs 0.06 - 0.02 1.08 0.79 

RTp 0.04 - 0.01 0.78 0.53 

RTup 0.09 - 0.03 0.75 0.43 

 

Overall, all three models, newly derived for Australian geographical conditions, 

perform well (due to a slight underestimation; low variation and acceptable reliability in 

results). However, as to precision, Table 7-3 shows that the pruned tree, compared to 

FLFArs, is better for predicting the 2012 flood event, having fewer values of mean bias 

error. This accuracy is due to considering more influencing parameters and having more 

complexity, which increases the capability to predict flood damage, especially when the 

model is transferred in time and space. Also, the un-pruned tree that was grown fully on 

the original data is less precise on an independent dataset. The result confirms the 

hypothesis of the lower prediction ability of an un-pruned tree on an independent 

system data (i.e. a low generalisation capability), signifying a low level of 

transferability in time and space (higher rigidity to the original system data). The RTup 

might also be subject to an additional source of uncertainty since additional variables 

are taken into account. It is worth noting that all damage models, on average, show a 

slight negative bias from the actual damage values which indicates an approximate 1 to 

3 percent underestimation in predictions. The variation of the errors was checked based 

on the distributions of the residuals (CV), and FLFArs shows more variation in the 

results.     

As stated earlier, the HR indicator, i.e. the percentage of damage records included in 

the 90 percent interval of predicted values, which was utilised for testing and comparing 

the reliability of the models’ predictions. According to Table 7-3, the performance of 
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FLFArs is more reliable, since the HR indicator is 0.79 (very close to 0.9 as the nominal 

coverage rate of 90 percent of model outcomes). This matter accords with the variation 

test outcomes. Consequently, the reliability of the models seems to be more dependent 

on the model approach. The FLFArs, as opposed to the other deterministic models (e.g. 

RTp and RTup ), is a probabilistic dependence model that depicts the most likely 

relationship among the water depth, the building characteristics and the percentage of 

damages (Hasanzadeh Nafari et al., 2016b; Lehman and Hasanzadeh Nafari, 2016). The 

reliance of this approach on the probability distributions of damage ratios has increased 

its performance reliability. 

As mentioned before, the predictive capability has also been studied for some sub-

classes of water depth and building characteristics. Figs.7-7 and 7-8 show the precision 

(the Euclidean Distance of the MAE and MBE errors) of the results for six different 

sub-classes of water depth and four groups of building types. 

 

 

Figure 7-9: Comparison of the models’ precision per water-depth class 
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Figure 7-10: Comparison of the models’ precision per building type 

 

Fig. 7-7 shows that the uncertainty of the pruned tree is less than the other two 

models, except when the water depth is between 41 and 60 centimetres or is more than 

101 centimetres. In these two cases, FLFArs and RTup approaches show a slightly better 

performance. Fig. 7-8 also depicts less uncertainty and more accuracy in the results for 

the transferred pruned tree in contrast to the other two flood damage models. However, 

FLFArs performs better for the two-storey timber buildings.  

The above differences in the magnitude of the errors related to the critical sub-classes 

for RTp damage predictions are not too considerable, and the results justify the overall 

better performance of the pruned tree, after transferring and using in a new area of 

study. This matter accords with the earlier findings. However, the outcomes would 

indicate the use of FLFArs if the critical water depth coincides with the critical type of 

the building (i.e. the water depth is between 41 and 60 centimetres or is more than 101 

centimetres, and the structure is a two-storey building with timber walls).  
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7.7 Conclusions 

Flood is a frequently occurring natural disaster with significant adverse consequences 

for Australian societies. Hence, flood risk management and flood risk reduction are 

attracting growing attention. In this context, damage assessment and loss prediction is 

an important component of flood risk mitigation. Although there is no widely accepted 

method of flood loss assessment, traditional stage-damage functions, due to simplicity, 

are accepted as the international standard for estimation of direct losses. These functions 

estimate the extent of losses by establishing a relationship among water depth, type of 

building at risk, and magnitude of damages. On the other side, flood as a complicated 

process may be controlled by more influencing parameters which are neglected in the 

traditional stage-damage functions. In this regard, tree-based analysis and data mining 

have recently been used to create some new flood loss estimation models with more 

complexity and more damage-influencing parameters.  

Although a variety of approaches are used in today’s studies, flood damage 

assessment models are still subject to a high level of uncertainty. Model validation, 

which is dependent on flood features and building specifications, has the largest effect 

on the accuracy of results. Model validation needs more careful attention if the damage 

model is used in a new study area and/or applied to a new flood event. However, due to 

a lack of historical data, model validation has been widely neglected in Australia. This 

study, therefore, has attempted to explore the validation and the predictive performance 

of three newly established flood loss models from Australia, different in approach and 

complexity (i.e. one stage-damage function and two tree-based models), after a temporal 

and spatial transfer. All three models were developed and calibrated with the data from 

the 2013 Queensland flood event. Their predictive capacity was compared and 

contrasted with the official loss records of the 2012 flood event. The models’ predictive 

power was tested for precision, variation, and reliability.  

The flood stage-damage function utilised in this study (FLFArs) is an empirical-

synthetic model that relies on the probability distributions of damage ratios. This newly 

derived model is a probabilistic dependence model that depicts the most robust 



Chapter 7: Predictive Applications of Australian Flood Loss Models  

 

-200- 

 

relationship among the water depth, the building characteristics, and the percentage of 

damages. This stage-damage function has been developed by considering the epistemic 

uncertainty about the depth damage relationship. In addition to the stage-damage 

function, two tree-based models have also been grown in this study. The trees are 

similar in approach and different in complexity, one being a pruned tree with less 

complexity, and the other an un-pruned fully grown tree with more complexity. These 

models are grown on the basis of the minimum value of the errors, and the importances 

and influences of 13 candidate predictors (i.e. depth of water, velocity, contamination of 

flood, private precautionary actions, emergency actions undertaken, former flood 

experience, area of building per person, average value of property, quality and 

resistance of property, and residents’ socioeconomic situation). 

Results show that the pruned tree is better for predicting the 2012 flood event, having 

less uncertainty of results. This accuracy is due to the complexity of the model (i.e. 

considering more damage-influencing parameters) which increases the capability to 

predict flood damages, especially when the model is transferred in time and space. 

Results also confirm the low level of transferability of the fully grown un-pruned tree, 

which is due to the low generalisation capability of this model. In addition, it has been 

shown that the performance of FLFArs is more reliable than the other two models. 

Accordingly, the reliability of the models seems to be more dependent on the model’s 

approach rather than its complexity. As stated above, FLFArs, as opposed to the tree-

based deterministic models, is a probabilistic dependence model. The reliance of this 

approach on the probability distributions of damage ratios has increased the reliability 

of its performance. Besides this overall comparison, this study has also explored the 

accuracy of the results and compared the performance of the models for some sub-

classes of water depth and building type. Generally, the results accord with the overall 

comparison outcomes. However, this detailed analysis indicates the use of FLFArs for 

floods with a depth ranging from 41 centimetres to 60 centimetres or more than 101 

centimetres and buildings with a two-storey structure and timber walls. 
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All in all, considering more details of the damaging process can be useful for 

improving the predictive capacity of Australian flood damage prediction models and 

enhancing the level of transferability. In this regard, statistical tests need careful 

attention, since complexity with parameters with low predictive power might have 

adverse effects on the outcomes and may increase the level of uncertainty of the results. 

Furthermore, reliance on probability analysis can intensify the reliability of damage 

models when they are subjected to use in different flooding events of Australia. 
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8 CONCLUSIONS 

 

 

8.1 Overview 

This research developed a validated flood damage assessment framework for the 

geographical area of Australia using historical data collected from recent extreme 

events. The results will provide decision-makers with an essential tool for planning 

better risk mitigation strategies and actively responding to flood disasters. 

 

Firstly, a comprehensive data set including information on the extent of damage, 

flood impact variables, and resistance factors was collected from the 2012 and 2013 

flood events in Queensland, Australia. Then, data mining, data preparation and data 

transformation were conducted. Afterwards, based on the sub-assembly approach and 

the variability in the vulnerability and value of structural components, a novel 

empirical-synthetic method was suggested. The new method was a general methodology 

for quickly estimating the extent of losses for each stage of water, and suggested simple 

and flexible curves with regards to the changeability in building practices.  

 

Since the function approach is a common and internationally accepted methodology 

for estimating the value of flood losses, some new relative multi-parameter flood 

damage assessment functions were derived, calibrated, and validated for the most 

common residential and commercial building types in Australia. The functions were 

developed using the bootstrapping approach and considered the inherent uncertainty in 
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the data sample, the variability of real-world circumstances, and the probabilistic 

relationship between vulnerability features of the properties and depth of water. Finally, 

the performance of the new models, in comparison to the empirical data, was contrasted 

with well-known flood damage assessment models from Australia and overseas.  

 

The constructed modelling approach was then transferred to a study area in Italy to 

check the ease of using local empirical data, evaluate the accuracy of the outcome and 

assess the ability to change parameters based on building practices across the world. In 

this study, the new model was calibrated using empirical damage data collected from a 

recent flood event in the region of Emilia-Romagna, and the performance of the model 

was validated for the prediction of loss ratios and absolute damage values. Furthermore, 

the predictive capacity of the model was studied for some sub-classes of water depth, 

and it was contrasted with other damage models frequently used in Europe. 

 

As flood damage assessment is a complicated process and might be dependent on a 

variety of parameters which are neglected in stage-damage functions, tree-based models 

(regression trees and bagging decision trees) were developed for exploring the 

interaction, importance, and influence of different damage-influencing parameters on 

the extent of losses (e.g. depth of water, flow velocity, contamination of water, material 

and characteristics of property, individual precautions and emergency actions, former 

flood experience of residents, and residents’ socioeconomic situations). This tree-based 

data mining approach, a new approach in flood-loss modelling, has tried to analyse the 

whole gamut of influencing factors, and assess their single or joint effects more 

comprehensively. In addition, the newly derived tree-based model was used for 

predicting the magnitude of damage and its performance was validated and compared 

with the outcomes of a stage-damage function. 

 

In the last part of this research, the authors have explored the predictive performance 

of the new approaches (i.e. flood loss functions and tree-based flood loss models) in 
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assessing the extent of physical damages after a temporal and spatial transfer. The 

performance of the newly derived flood loss function was contrasted with two tree-

based damage models, one pruned and one un-pruned. The tree-based models were 

created based on the interaction of flood loss ratio with 13 examined predictors gathered 

from flood specifications, building characteristics and mitigation actions. The predictive 

power of the models was tested in terms of precision, variation and reliability. The 

prediction capacity was also checked for some sub-classes of water depth and some 

groups of building type. 

8.2 Conclusions 

The main findings and outcomes of this research can be summarised as follows: 

 

• The first advantage of the newly derived stage-damage functions is related to the 

capacity to utilise empirical data. Due to calibration of FLFArs and FLFAcs with real 

damage data, greater accuracy has been achieved, and the effects of damage reduction 

measures have been considered. The greater precision is clear by comparing the 

performance of the FLFArs model with the outcomes of the Geoscience Australia 

(GA) depth-damage function and the USACE model from the USA. The statistical 

comparison has also been conducted for the FLFAcs model in contrast to the 

FLEMOcs model and the FEMA damage functions from overseas, as well as the 

ANUFLOOD damage model from Australia. Furthermore, numerical analysis was 

conducted to estimate the level of uncertainty and validate the applied damage 

models. The validation procedure shows very good results for FLFArs and FLFAcs 

(i.e. low predictive error, low variation and acceptable reliability of results). These 

analyses show that the accuracy of results is dependent on model calibration, 

especially when the water depth is the only hydraulic parameter considered. Also, 

this study shows that the evaluated state methodologies are considerably 

overestimating the magnitude of flood impacts, or significantly underestimating the 

value of losses since they have not been calibrated with updated empirical loss data. 
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• The newly derived relative stage-damage function also has a better level of 

transferability in time and space. The study has attempted to improve the accuracy 

and transferability of the model by moving away from a traditional approach (i.e. 

relying only on a deterministic relationship between the use of a flooded object and 

the stage of water) into a new approach which uses multi-parameters and probabilistic 

analysis. Accordingly, the study has illustrated a bootstrapping approach to the 

empirical data to consider the inherent uncertainty of the data set and to assist in 

describing confidence limits around the flood loss function parameters. The inherent 

uncertainty of the new model is a function of the knowledge (epistemic) uncertainty 

and the great variation in building characteristics. By this approach, the variability in 

real-world behaviours and the most likely relationship between the flooded 

properties’ features and depth of water have been explored. 

 

• The other advantage of the stage-damage functions is the simplicity with which its 

parameters can be changed based on building practices (different foundation height, 

ground elevation, damage percentages below ground, number of storeys, height of 

storeys, maximum damage as a percentage and the beginning elevation for damage) 

across the world. The method is simple enough to understand and generalise to other 

types of buildings and vulnerability classes. The validation procedure of the 

transferred model shows that estimates are good (no bias, 10% mean absolute error 

and 14% root mean square error), especially when the flood is deep (more than 60 

cm) and its performance is acceptable. Also, its predictive capacity is significantly 

better than the Damage Scanner model used frequently in Europe. 

 

• This study outcome shows that tree-based models are effective in identifying the 

significant damage-influencing factors and extracting the local relevance of every 

predictor. The result of the pruned tree shows that water depth, floor space, private 

precautionary measures, building value and building quality are the important 

damage predictors. Water depth is the most significant damage-influencing 

parameter, correlating positively with the loss ratio. Building floor space and building 
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quality correlate negatively with the extent of losses, especially when the flood is 

deep (for water depths more than 64cm and more than 177.5cm, respectively). The 

private precaution measures correlate negatively with the loss ratio when the water 

depth is high. This finding is opposite to the outcome of the studies in Germany, 

where the effects of the precaution measures were significant for the shallow flood. 

The reason can be inferred based on the type of precaution measures considered and 

the flood characteristics. The other damage influencing parameter is building value. 

However, its correlation with the loss value is not specified. Other damage predictors 

(e.g. water contamination, flow velocity and socioeconomic status) might be found to 

correlate with the extent of losses if, regardless of the overfitting phenomena, an 

unpruned tree had been developed. 

 

• Furthermore, the performance of tree-based models was compared with the newly 

derived flood loss function (FLFA). It was shown that the regression tree, which 

considers more details of the flood damage process, performs better (with fewer 

values for MAE and RMSE errors, and a higher correlation coefficient), and has a 

higher transferability across time and space. Also, there is a small improvement in the 

predictive capability and the reliability of the bagging decision tree compared to the 

regression tree. Accordingly, considering more damage-influencing parameters 

(especially the important factors stated in this research) and taking advantage of tree-

based models are recommended. 

 

In summary, this thesis presents a significant contribution to the flood damage 

assessment process by offering a calibrated and validated flood loss estimation 

framework. The accuracy, transferability and reliability have been enhanced, especially 

when the flood is deep, the extent of damage is more considerable, and the prediction 

performance of the model is more important. The results provide the input data for 

subsequent damage reduction, vulnerability mitigation and disaster risk reduction 

actions. 
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8.3 Recommendations for Future Work 

• The focus of this research was on short duration riverine (low-velocity) inundation. 

Hence, further research on residential and non-residential stage-damage functions 

will be aimed at the evaluation of more flood impact parameters (high velocity, water 

salinity, long duration and high sediment load), incorporating more factors 

influencing exposure and vulnerability, and enhancing precision in damage 

documentation procedures. 

 

• Although non-residential building losses are less about structural damage and more 

about damage to contents, due to limited availability of data, the FLFAcs model has 

been built only for structural damage. However, the simplicity of the new function 

makes it possible to be developed in future research, even for use in another region of 

study. Also, since the vulnerability of commercial buildings to flood is of particular 

interest to the insurance industry, databases of insurance claims can benefit this 

research considerably. Therefore, reconciliation with insurance claims data and 

consideration of more flood loss events are recommended for future work. Finally, 

taking into account more variations in commercial sectors and evaluation of indirect 

losses is recommended. 

 

• Further research on tree-based models will be aimed at examining a more 

comprehensive data set to explore the significance of other influencing factors (e.g. 

return period, long duration flooding, sediment loading and early warning). Overall, 

considering more details of the damaging process can be useful for improving the 

predictive capacity of flood damage prediction models and enhancing the level of 

transferability. In this regard, reliance on probability analysis can intensify the 

reliability of damage models, particularly when the models are used in different 

flooding events. 
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Abstract. Rapid urbanisation, climate change and unsustain-

able developments are increasing the risk of floods. Flood is

a frequent natural hazard that has significant financial con-

sequences for Australia. The emergency response system in

Australia is very successful and has saved many lives over

the years. However, the preparedness for natural disaster im-

pacts in terms of loss reduction and damage mitigation has

been less successful.

In this paper, a newly derived flood loss function for Aus-

tralian residential structures (FLFArs) has been presented and

calibrated by using historic data collected from an extreme

event in Queensland, Australia, that occurred in 2013. After-

wards, the performance of the method developed in this work

(contrasted to one Australian model and one model from

USA) has been compared with the observed damage data

collected from a 2012 flood event in Maranoa, Queensland.

Based on this analysis, validation of the selected methodolo-

gies has been performed in terms of Australian geographical

conditions.

Results obtained from the new empirically based function

(FLFArs) and the other models indicate that it is apparent that

the precision of flood damage models is strongly dependent

on selected stage damage curves, and flood damage estima-

tion without model calibration might result in inaccurate pre-

dictions of losses. Therefore, it is very important to be aware

of the associated uncertainties in flood risk assessment, es-

pecially if models have not been calibrated with real damage

data.

1 Introduction

Studies have shown that compared to other types of natural

hazards, floods are a considerable threat to a nation’s econ-

omy, the built environment, and people (André et al., 2013;

Kourgialas and Karatzas, 2012; Llasat et al., 2014; UNISDR,

2009). Furthermore, in recent decades, the flood risk due to

climate change and the growth in value and vulnerability of

exposed properties has been increasing exponentially (Elmer

et al., 2012; Kundzewicz et al., 2005), which subsequently

raises the significance of flood risk management. Flood dam-

age assessment in order to mitigate the probability of ex-

pected losses is an important part of the risk management

process (André et al., 2013; Elmer et al., 2010; Kaplan and

Garrick, 1981), and the results will provide decision-makers,

emergency management organisations, and insurance and

reinsurance companies with a tool for planning better risk

mitigation strategies to cope with future disasters (Emanuels-

son et al., 2014; Merz et al., 2010).

In general, there is no common agreement among terms

such as damage, loss and impact, but flood damage can ei-

ther be categorised as direct or indirect. The direct category

occurs due to physical contact between the floodwater and

the inundated objects, and the indirect category is based on

the effects of direct damage on a wider scale of space and

time (Meyer et al., 2013; Molinari et al., 2014a; Thieken et

al., 2005). Both categories can be evaluated as marketable

(tangible) or non-marketable (intangible) values (André et

al., 2013; Kreibich et al., 2010). The focus of this study is
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Commercial building flood losses significantly affect the Australian economy; however, there are not
many models for commercial flood damage estimation and their results are not reliable. This study has
attempted to derive and develop a new model (FLFAcs) for estimating the magnitude of direct damage on
commercial structures. The FLFAcs – Flood Loss Function for Australian commercial structures, was ca-
librated using empirical data collected from the 2013 flood in Bundaberg, Australia, and considering the
inherent uncertainty in the data sample. In addition, the newly derived model has been validated using a
K-fold cross-validation procedure. The model performance has also been compared with the Flood Loss
Estimation MOdel for the commercial sector (FLEMOcs) and the Federal Emergency Management Agency
(FEMA) damage functions from overseas, as well as the ANUFLOOD damage model from Australia.

The validation procedure shows very good results for FLFAcs performance (no bias and only five per
cent mean absolute error). It also shows that ANUFLOOD, as Australia’s most prevalently used com-
mercial loss estimation model, is still subject to very high uncertainty. Hence, there is an immediate need
for a project to build new depth–damage functions for commercial and industrial properties.

Awareness of these issues is important for strategic decision-making in flood risk reduction and it
could amplify the cognition of decision-makers and insurance companies about flood risk assessment in
Australia.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical analyses shows the considerable impacts of flood
risk compared to other types of natural hazards [1,30,35,64]. In
Australia, floods are the most costly of all disaster types, con-
tributing 29% of the total cost for the nation’s economy and the
built environment [29,7]. Unfortunately, unsustainable develop-
ments and global warming are increasing the risk of flood
[13,34,37]. Consequently, flood risk assessment and flood risk
mitigation are gaining more attention [1,31,49].

Flood risk can be defined as the probability and magnitude of
expected losses [1,14,27,31,47,48,63]. Therefore, loss estimation and
consequence assessment is an indispensable part of flood risk as-
sessment, and the results will provide decision-makers with an es-
sential tool for planning better risk reduction strategies [15,18,37,39].

In general, flood losses can be categorised into direct or indirect
[41,43,61]; and marketable (tangible) or non-marketable (intangible)
u.au (R. Hasanzadeh Nafari).
values [1,31,43]. Direct damages take place due to physical contact
between the floodwater and inundated structures [23,37,46]. This
study is limited to direct, tangible damages of commercial structures
due to a short duration of riverine (low velocity) inundation.

In Australia, direct tangible damages of commercial buildings
could be estimated by the Rapid Appraisal Method (RAM) or by
function approaches (e.g. ANUFLOOD). Function approaches are
the most common and internationally accepted methodology [23].
They make a causal relationship between the magnitude of the
hazard and resistance of flooded objects, and can estimate the
extent of losses for each stage of water [11,19,26,33,45,57,60].
Function approaches can be categorised into absolute and relative
types. Absolute functions express the magnitude of damages in
monetary values; while relative types estimate the dimension of
losses as a ratio of the total value, i.e. replacement value or de-
preciated value [31]. Relative loss functions in contrast to absolute
loss functions have better transferability in space and time since
they are independent of changes in market values [39]. However,
both types are restricted to the area of origin in terms of geo-
graphical conditions, i.e. building characteristics and flood speci-
fications [37,50,8]. Therefore, the results of transferred models
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Abstract. The damage triggered by different flood events
costs the Italian economy millions of euros each year. This
cost is likely to increase in the future due to climate variabil-
ity and economic development. In order to avoid or reduce
such significant financial losses, risk management requires
tools which can provide a reliable estimate of potential flood
impacts across the country. Flood loss functions are an in-
ternationally accepted method for estimating physical flood
damage in urban areas. In this study, we derived a new flood
loss function for Italian residential structures (FLF-IT), on
the basis of empirical damage data collected from a recent
flood event in the region of Emilia-Romagna. The function
was developed based on a new Australian approach (FLFA),
which represents the confidence limits that exist around the
parameterized functional depth–damage relationship. After
model calibration, the performance of the model was vali-
dated for the prediction of loss ratios and absolute damage
values. It was also contrasted with an uncalibrated relative
model with frequent usage in Europe. In this regard, a three-
fold cross-validation procedure was carried out over the em-
pirical sample to measure the range of uncertainty from the
actual damage data. The predictive capability has also been
studied for some sub-classes of water depth. The validation
procedure shows that the newly derived function performs
well (no bias and only 10 % mean absolute error), especially
when the water depth is high. Results of these validation

tests illustrate the importance of model calibration. The ad-
vantages of the FLF-IT model over other Italian models in-
clude calibration with empirical data, consideration of the
epistemic uncertainty of data, and the ability to change pa-
rameters based on building practices across Italy.

1 Introduction

Floods are the natural hazards that cause the largest eco-
nomic impact in Europe today (European Environment
Agency, 2010). Italy is no exception, with about 80 % of its
municipalities being exposed to some degree of hydrogeo-
logical hazards (Zampetti et al., 2012). Regarding flood haz-
ard frequency, 8 % of Italy’s territory and 10 % of its popu-
lation are exposed to a flood probability of once every 100
to 200 years (ANCE/CRESME, 2012; Trigila et al., 2015).
This issue is reflected in over a billion euros spent from
2009 to 2012 on recovery from extreme hydrological events
(Zampetti et al., 2012). Italy is, in fact, the European country
where floods generate the largest economic damage per an-
num (Alfieri et al., 2016). This is especially worrisome con-
sidering that the frequency of extreme flood losses may be
doubled at least by 2050 in Europe due to climatic change
factors and urban expansion (Jongman et al., 2014). Climate
variability already affects rainfall extremes and the peak vol-
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Abstract: Flood is a frequent natural hazard that has significant financial consequences for Australia.
In Australia, physical losses caused by floods are commonly estimated by stage-damage functions.
These methods usually consider only the depth of the water and the type of buildings at risk.
However, flood damage is a complicated process, and it is dependent on a variety of factors which
are rarely taken into account. This study explores the interaction, importance, and influence of
water depth, flow velocity, water contamination, precautionary measures, emergency measures,
flood experience, floor area, building value, building quality, and socioeconomic status. The study
uses tree-based models (regression trees and bagging decision trees) and a dataset collected from
2012 to 2013 flood events in Queensland, which includes information on structural damages, impact
parameters, and resistance variables. The tree-based approaches show water depth, floor area,
precautionary measures, building value, and building quality to be important damage-influencing
parameters. Furthermore, the performance of the tree-based models is validated and contrasted with
the outcomes of a multi-parameter loss function (FLFArs) from Australia. The tree-based models
are shown to be more accurate than the stage-damage function. Consequently, considering more
parameters and taking advantage of tree-based models is recommended. The outcome is important
for improving established Australian flood loss models and assisting decision-makers and insurance
companies dealing with flood risk assessment.

Keywords: flood damage assessment; flood risk; stage-damage function; multi-variate analysis; flood
loss-influencing parameters; tree-based analyses; FLFArs; risk reduction

1. Introduction

In recent decades, flood risk is growing, due to climate change and increase in vulnerability of
properties at risk [1–3]. In Australia, floods are the most costly of all disaster types [4], contributing
29% of the total cost of the nation’s economy and the built environment [5,6]. Accordingly, flood risk
management is attracting more attention [7–9], and results are used to inform disaster management
policy and support the development of risk reduction measures [10,11]. Flood risk management has to
be based upon an appropriate evaluation of flood hazard and flood vulnerability [12,13], including an
assessment of damage and effectiveness of risk reduction measures [14–16]. Therefore, loss estimation
and consequence assessment is an indispensable part of flood risk management [17,18]. However,
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ABSTRACT
In recent decades, considerably greater flood losses have increased
attention to flood risk evaluation. This study used data-sets collected from
Queensland flood events and investigated the predictive capacity of three
new Australian flood loss models to assess the extent of physical
damages, after a temporal and spatial transfer. The models’ predictive
power is tested for precision, variation, and reliability. The performance of
a new Australian flood loss function was contrasted with two tree-based
damage models, one pruned and one un-pruned. The tree-based models
are grown based on the interaction of flood loss ratio with 13 examined
predictors gathered from flood specifications, building characteristics, and
mitigation actions. Besides an overall comparison, the prediction capacity
is also checked for some sub-classes of water depth and some groups of
building-type.
It has been shown that considering more details of the flood damage
process can improve the predictive capacity of damage prediction
models. In this regard, complexity with parameters with low predictive
power may lead to more uncertain results. On the other hand, it has also
been demonstrated that the probability analysis approach can make
damage models more reliable when they are subjected to use in different
flooding events.
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1. Introduction

Flood is a common natural disaster in Australia, and a frequently occurring natural phenomenon in
the world (Baeck et al. 2014; Hasanzadeh Nafari et al. 2015; Bhatt et al. 2016). In recent decades,
flood impacts have increased (Kreibich et al. 2007; Cheng and Thompson 2016; McMillan et al.
2016; Mojaddadi et al. 2017), reaching 29% of the total cost of Australian natural disasters (Bureau
of Transport Economics 2001). Hence, flood risk evaluation including hazard assessment and esti-
mation of the associated consequences (Ciullo et al. 2016; Vojtek and Vojtekov�a 2016) has attracted
growing attention (Raaijmakers et al. 2008; Merz et al. 2010; Cammerer et al. 2013; Kundzewicz
et al. 2013). While much effort has gone into hazard investigation, i.e. models of probability and
intensity of flood, flood loss estimation models are still subject to a high level of uncertainty (Merz
et al. 2004; Kreibich and Thieken 2008; Meyer et al. 2013). Loss estimation is needed in cost–benefit
analyses of disaster risk reduction measures (Mechler 2016), vulnerability and resilience studies,
flood risk analyses, and in the insurance and reinsurance sectors (de Moel and Aerts 2011).
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